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Abstract—A blockchain records transactions among users on
a public ledger. It has become front and center of the technology
discussion in recent years. A piece of code deployed on a
ledger and executed automatically by nodes on the network
is a smart contract. While smart contracts have enabled a
variety of applications on blockchain, they may contain security
vulnerabilities, leading to massive research on smart contract
analysis. This paper presents the first comprehensive survey over
smart contract analysis by collecting 391 papers, extracting 67
analysis-related ones, and classifying them into three dominant
topics: static analysis for vulnerability detection, static analysis
for program correctness, and dynamic analysis. We further
classify each topic and conclude with key insights in terms of
unsolved challenges and directions in future research.

Index Terms—Blockchain, smart contract, static analysis, dy-
namic analysis

I. INTRODUCTION

A blockchain refers to a decentralized and public digital
ledger on top of a node-connected network [1] and records
transactions among users. It is a growing list of blocks,
which contain transactional data and point to previous blocks.
Once the network receives broadcasted transactions, mining
nodes validate the transactions, create a block with them,
and broadcast the block to other nodes. Each node has its
own copy of the blockchain, and for a new block creation,
it appends the block as a tail of its chain. This mechanism
provides the immutability of transaction data. As a blockchain
allows digital transactions among parties without any third-
party support, various applications have appeared in diverse
domains like finance [2], business [3], and IoT [4].

A smart contract [5] is a program written on the under-
lying ledger and has enabled such applications. Developers
implement smart contracts in programming languages like
Serpent [6], Solidity [7], and Vyper [8], and nodes on the
network automatically execute their code. While the main
usage is to transfer assets, smart contracts can express complex
functionalities as well. Bartoletti and Pompianu [9] presented
the popularity of smart contract applications through an em-
pirical study on two most dominant platforms, Bitcoin [10]
and Ethereum [11]. They collected 1,673,271 transactions
from 834 contracts and classified them into five categories.
Finance was the most popular domain on both platforms, with
1,094,437 transactions. Notary and games were the second
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most popular domains on Bitcoin and Ethereum, respectively.
Despite its popularity, smart contracts may contain security
vulnerabilities, which can lead to severe financial loss. For
example, the reentrancy bug [12] of the DAO contract en-
abled an adversary to withdraw USD 50 million worth of
cryptocurrency. Also, a vulnerability on the Parity Multisig
Wallet contract [13] resulted in locking USD 146 million worth
of coins. As a result, researchers have actively studied smart
contract analysis.

This paper presents the first comprehensive study over smart
contract analysis to understand the current research trends. We
first collected 391 papers from various sources such as major
conference proceedings and arXiv e-prints that contain the
keyword “smart contract” in their titles or abstracts. Then, by
examining each one closely, we extracted 67 papers relevant to
smart contract analysis and classified them into three dominant
topics: static analysis for vulnerability detection, static analysis
for program correctness, and dynamic analysis. We explore
each topic thoroughly with further classifications and provide
key insights in terms of open challenges and future research
directions.

II. BLOCKCHAIN SMART CONTRACTS

In 2008, Satoshi Nakamoto proposed a protocol of the first
cryptocurrency called Bitcoin [14]. While Bitcoin served as
a basis of smart contract development, it could not support
general-purpose smart contracts, as it stored only transaction
histories on blocks. Five years later, Vitalik Buterin [15]
introduced the first platform for general-purpose smart con-
tracts, Ethereum, and made blockchain applicable to various
domains. Solidity is the most dominant programming language
for Ethereum smart contracts, and EVM bytecode is the actual
code deployed on the platform. This section explains the
characteristics of Ethereum, Solidity, and EVM bytecode, as
most research is based on them.

a) Ethereum: Ethereum is a public and distributed com-
puting platform based on blockchain [16]. It has Ether as
its underlying cryptocurrency and operates Ethereum Virtual
Machine (EVM) [11]. The machine has its own instruction
set, which is Turing-complete and much more expressive than
the scripting language for Bitcoin [17]. It contains an operand
stack where the instructions execute upon, a byte-addressed



volatile memory, and a permanent storage with 32-byte key-
value pairs. Also, it executes under a resource mechanism
called gas and consumes a certain amount of gas for executing
each instruction. Nodes in Ethereum assign gas prices when
submitting transactions, and miners get rewards depending
on the gas prices and the total amount of gas required for
execution. While Ethereum has a secure design [11], it has
the scalability issue as every node holds the entire history of
transactions.

b) Solidity: Solidity is contract-oriented, statically-typed,
and motivated by C++, Python, and JavaScript. It supports
various features such as inheritance, user-defined types, and
libraries. “Contracts in Solidity are similar to classes in object-
oriented languages. Each contract can contain declarations of
State Variables, Functions, Function Modifiers, Events, Struct
Types and Enum Type.” [7] State variables are global variables,
and contract storage stores their values permanently. Modifiers
work as guarded conditions of executions. A library is a
special contract, and once deployed at a specific address, the
calling contracts pass their contexts to execute the library
code through DELEGATECALL. Solidity provides not only
elementary types like address, but also user-defined types.
While the language is actively used, it contains various vul-
nerable features [18, 19, 20], and the compiler has released
vulnerability patches constantly [21].

c¢) EVM bytecode: While Ethereum supports a variety
of programming languages such as Solidity, their compilers
translate the code to EVM bytecode [11]. The bytecode has
114 opcodes and expresses execution logic in stack-based
representations. An EVM bytecode consists of creation code
and runtime code. The former code corresponds to constructor
instruction sequences, and EVM executes it only once when a
client invokes the contract creation transaction. The latter code
is the one actually deployed on blockchain with an address
and its own storage. Every time a node invokes a function by
submitting a transaction, Ethereum directs the program counter
to the corresponding function logic by checking the initial
four bytes in the input data. EVM instructions do not have
annotated types and operate on 32-byte words.

III. ANALYSIS OF BLOCKCHAIN SMART CONTRACTS:
TECHNIQUES

The extracted papers either statically or dynamically ana-
lyzed smart contracts. Especially, the portion of static analyz-
ers was roughly twice as large as that of dynamic analyzers,
so we classify them into two groups based on their purposes:
vulnerability detection and program correctness. Figure 1
shows the overall classification where a ladybug indicates an
analyzer that detects “exploitable vulnerabilities,” of which we
explain the definition later.

A. Static Analysis for Vulnerability Detection

Smart contracts have suffered from a variety of vulnerabili-
ties and exploits, resulting in financial losses [18]. As a result,
researchers have adopted several techniques and developed
static analyzers that detect vulnerabilities.

Symbolic execution, which simulates concrete executions
with symbolic value inputs, is the most dominant technique for
vulnerability detection in EVM bytecode. OYENTE [22] targets
transaction-ordering dependence, timestamp dependence, mis-
handled exceptions, and re-entrancy problems. MAIAN [23]
analyzes multiple invocations of smart contracts to detect
three types of trace vulnerabilities: greediness, prodigality,
and suicidality. Chen et al. [24] identified seven gas-costly
programming patterns and developed GASPER to detect them.
TEETHER [25] automatically generates transactions that can
exploit the given contracts. sCompile [26] reports program
paths containing monetary transactions, called critical paths,
since most vulnerabilities are related to money transfer [27].
Torres et al. [28] collected existing honeypots and classified
them to disclose common techniques to trick users. Based
on their findings, they implemented HONEYBADGER and de-
tected real-world honeypot contracts. Li and Long [29] focused
on “standard violation errors” that token contracts deviate from
the ERC-20 and ERC-721 standards. They developed SOLAR,
which reports violation-triggering transactions.

Abstract interpretation [30] is a technique that soundly
approximates program semantics. Several analyzers leveraged
the technique for EVM bytecode as it can explore all possible
executions. SECURIFY [31] checks whether the input property
from a user holds or not in a given smart contract. It works in
two phases: extraction of semantic facts and checking against
compliance and violation patterns. MadMax [32] identifies
three gas-related vulnerabilities: unbounded mass operations,
non-isolated external calls, and integer overflows. Vandal [33]
leverages Soufflé [34] to produce results for custom vulner-
ability queries. Grishchenko et al. [35] developed a static
analyzer called EtherTrust based on their previous work of
EVM semantics formalization [36] and detected re-entrancy
vulnerability. ZEUS [37] detects seven previously-reported
vulnerabilities in Solidity contracts by taking user policies.

The popularity of machine learning techniques has led to
adopting them for smart contract domain as well. Tann et al.
[38] adopted long-short term memory (LSTM) to detect sui-
cidal, prodigal, and greedy contracts. They trained the LSTM
model by labeling MATAN-detected contracts as vulnerable,
and the model showed a very high test accuracy. Huang [39]
used a convolution neural network to detect compiler bugs
such as DelegateCallReturnValue [7] automatically. While the
previous two papers targeted EVM bytecode, Liu et al. [40]
developed a tool called Ether* based on N-gram language
model to audit Solidity contract.

Other than the ones mentioned above, there exist a variety
of other techniques used for vulnerability detection. More than
a half of such papers targeted Solidity contracts. Tikhomirov
et al. [41] developed SmartCheck, which detects a wide range
of vulnerabilities using XPath Query [42]. Bansal et al. [43]
presented an automatic generation tool of commutativity con-
ditions called SERVOIS and detected concurrency-related vul-
nerabilities. SIF [44] is a framework where programmers can
easily derive several analysis tools like an assertion checker
to detect arithmetic vulnerabilities. Slither [45] is another
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Fig. 1: Classification overview of smart contract analyzers

framework to support a variety of applications such as a vul-
nerability detector and a code visualizer. SMARTEMBED [46]
embeds Solidity contracts into vectors and apply similarity
checking to find code clones. It reports code fragments that
are similar to known bugs as bugs.

The other techniques detected vulnerabilities in EVM byte-
code or WebAssembly (WASM) [47]. Muller [48] developed
Mythril, a model checking tool consisting of a few modules,
each detecting one of the following vulnerabilities: unprotected
SUICIDE instructions, unprotected Ether send, reentrancy,
and DELEGATECALL. SMARTSCOPY [49] leverages program
synthesis based on the victim contracts’ ABI and automatically
generates exploit contracts. EASYFLOW [50] is an arithmetic
overflow detector based on taint analysis. By interpreting input
transactions, it classifies contracts into potential overflow,
overflow, or safe. EVulHunter [51] is the first detector for EOS
WASM contracts [52] to which malicious users can transfer
fake EOS tokens. It simulates WASM execution in a virtual
environment on demand.

B. Static Analysis for Program Correctness

As smart contracts are immutable once deployed, guaran-
teeing their correctness is particularly more important than
ordinary programs. Researchers have come up with diverse
techniques to verify properties of smart contracts.

The most dominant technique is model checking, which
takes a formal model of a finite set of states and automat-
ically proves whether the input specification complies with
the model. Solidity contracts have been mostly the target of
modeling. Abdellatif and Brouscmiche [53] presented smart
contract verification in their execution environments. Particu-
larly, they reported probabilities of each possible scenario by
hackers. Chatterjee et al. [54] analyzed payoffs expected to
gain from interacting with other contracts, since a payoff out
of an acceptable range implies a vulnerability. VeriSolid [55]
takes two inputs from users: contracts as transition systems
and properties in CTL. It transforms the systems multiple
times and leverages the nuXmv model checker [56] to verify
the properties. Wang et al. [57] presented VERISOL, which

leverages the CORRAL model checking tool [58] to verify
whether customer contracts in the Azure Blockchain [59]
semantically conform to their policies.

Model checking has been mostly on but not limited to
Solidity contracts. It has verified the contracts written in other
languages as well. Atzei et al. [60] and Bartoletti and Zunino
[61] verified the liquidity of BitML contracts. The property
guarantees the existence of a path to decrease the contract
balances. Andrychowicz et al. [62] designed a framework
based on timed automata model to prove the security of
Bitcoin contracts. Given a blockchain model, participants’
models, and a specification under question, the UPPAAL model
checker [63] automatically completes the verification. Shishkin
[64] presented verification of Sol contracts, a subset of Solid-
ity, along with a formal method to specify state and trace
properties. van der Meyden [65] leveraged the MCK model
checker [66] and verified whether the pseudocode of an escrow
contract correctly exchanges the two parties’ assets.

Formal verification is another dominant technique for pro-
gram correctness. It mathematically proves the correctness of
a given formal model against a formal specification. Amani
et al. [67] presented an Isabelle/HOL-based framework to
prove functional correctness of bytecode. Hirai [68] leveraged
the same theorem prover to verify the Deed contract [69].
The verifier discussed in the papers by Park et al. [70] and
Chen et al. [71] is a derivative from the K framework and
verified high-profile smart contracts. While the aforementioned
papers verified EVM bytecode, Bhargavan et al. [72] and
SAFEVM [73] can verify both Solidity contracts and EVM
bytecode. Bhargavan et al. designed a verification framework
for both source-level and low-level properties using F* [74].
SAFEVM transforms input contracts into C programs with
SV-COMP annotations [75]. Any verifiers compatible with
the annotations can work as back-ends. SOLC-VERIFY [76]
leverages modular analysis and SMT solving to automatically
verify input properties of Solidity contracts.

Formal verification was not only for Solidity and EVM byte-
code, but also for Oak and Michelson languages. Annenkov
and Spitters [77] presented an embedding technique of Oak



contracts into Coq and verified a crowdfunding contract with
respect to several properties. Mi-Cho-Coq [78] is a Cog-based
framework for verification of Michelson smart contracts. A
case study proved two properties of a multisig contract.

Other techniques used for program correctness are pro-
gram synthesis, inductive synthesis and resource analysis [79].
FSolidM [80] provides a graphical user interface to specify
smart contracts as finite state machines (FSMs) and automat-
ically synthesizes their corresponding Solidity code. Also, it
supports a set of security and functionality plugins. Mavridou
and Laszka [81] demonstrated the tool by adopting a blind
auction smart contract as a use case. Suvorov and Ulyantsev
[82] presented another program synthesis technique of correct-
by-construction Solidity contracts. Once users provide LTL
specifications, the technique generates FSMs conformed to
the specifications and then transforms them to corresponding
Solidity contracts. TXSC [83] is a framework where users
provide smart contracts with the supported primitives. It then
translates them into concurrency bug-free Solidity contracts.
VERISMART [84] takes a Solidity contract, inductively synthe-
sizes transaction invariants, and verifies the safety of arithmetic
operations. GASTAP [85] analyzes EVM bytecode and infers
the gas bounds of all public contract functions. While the gas
bounds are parametric to several factors such as contract states,
the tool can prevent out-of-gas exceptions in advance.

C. Dynamic Analysis

Dynamic analysis of smart contracts has advantages over
static analysis that it does not require any source code and has
low false positive rates. Researchers have adopted a variety
of dynamic techniques for both vulnerability detection and
program correctness.

The most common technique is fuzzing [86], which executes
target programs with random inputs. ContractFuzzer [87] de-
tects seven kinds of vulnerabilities such as exception bypassing
and reentrancy. It consists of an offline EVM instrumentation
tool and an online fuzzing tool. ETHRACER [88] fuzzes
input bytecode with function call sequences to detect “event-
ordering” bugs. The sequences follow the “happens-before”
relations, and the tool reports sequence pairs that result in
different contract states. HARVEY [89] is a greybox fuzzer
extended with two methods: input prediction and on-demand
transaction sequence. BRAN [90] is another greybox fuzzer
combined with an online static analysis to guide the fuzzer
towards target locations. While the aforementioned fuzzers
execute on EVM bytecode, ReGuard [91] works on both
Solidity and bytecode. It reported seven reentrancy bugs out
of five smart contracts from Etherscan. ContraMaster [92]
is a Solidity-level grey-box fuzzer to detect seven kinds of
vulnerabilities. It fuzzes with transaction sequences, validates
the results based on its test oracle, and reports an exploiting
script in case of a violation.

Runtime verification [93] has been another common tech-
nique for dynamic smart contract analysis. It monitors contract
executions at runtime to detect or protect from malicious
behaviors. Grossman et al. [94] defined two notions, dynami-

cally effectively callback free (DECF) execution and statically
effectively callback free (SECF) object. As non-DECF exe-
cutions imply re-entrancy vulnerabilities, they implemented a
runtime monitor called ECFChecker to detect such executions
in Solidity contracts. DappGuard [95] is a system for live
Solidity contract monitoring that detects transactions with
known attacks and protects them prior to consequent exploits.
It works in two phases, knowledge acquisition and active
monitoring for detection, and handles various vulnerabilities
including keeping secrets and reentrancy. Colombo et al. [96]
suggested an extension of a Solidity runtime verification tool
called CONTRACTLARVA [97] to support violation recovery
as well. The conceptual idea is based on the notions of
checkpointing and compensations. Sereum [98] is a runtime
monitoring tool that prevents deployed EVM bytecode from
reentrancy attacks.

The last common technique is concolic testing [99], which
combines symbolic evaluation with concrete execution. Anno-
tary [100] is a concolic execution framework to detect vul-
nerabilities in EVM bytecode. The framework supports inter-
procedural as well as inter-transactional analysis while extract-
ing on-chain values for concrete execution. Manticore [101] is
another concolic execution framework that can analyze both
native binaries and EVM bytecode. FEther [102] is a Cog-
based interpreter, one of the components on the FSPVM-
E [103] system under active development. By combining
symbolic evaluation and theorem proving-based concrete exe-
cution, it executes and verifies Lolisa contracts.

The remaining papers of dynamic analysis have adopted
various techniques. Wu et al. [104] and ContractMut [105]
proposed that mutation testing can aid developers to prevent
mistakes in developing smart contracts. Wu et al. defined
15 mutation operators and showed how effective they are in
identifying vulnerabilities in Solidity contracts. ContractMut
mutates Solidity contracts with similar operators while track-
ing gas consumption to filter out out-of-gas execution. Brei-
denbach et al. [106] leveraged N-version programming [107]
and presented the Hydra Framework, which induces hackers to
disclose Solidity contract bugs with an incentive mechanism.
Guth et al. [108] presented the first specification mining [109]
for Solidity contracts. It expresses smart contracts as finite
automata and provides an intuitional understanding of their
behaviors. ContractVis [110] extracts transaction histories of a
verified Solidity contract and re-executes them on Truffle [111]
to analyze its transparency. Chen et al. [112] pointed out that
the current gas mechanism is not defensive to DoS attacks.
They implemented an emulation-based framework for EVM
bytecode and demonstrated that current gas costs are not
proportional to consumption.

While the static or dynamic analyzers that detect vulner-
abilities target different vulnerability types, we extract the
ones already exploited or known to be exploitable and call
them “exploitable vulnerabilities.” Figure 2 shows the list
of exploitable vulnerabilities along with the analyzers that
detect them. The referenced sources for checking exploitability
are [18, 19, 113].
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Fig. 2: Exploitable vulnerabilities of smart contracts and analyzers that detect them

IV. ANALYSIS OF BLOCKCHAIN SMART CONTRACTS:
INSIGHTS

This section discusses unsolved challenges and possible
directions in future research of smart contract analysis.

A. Open Challenges

1) Ambiguity in Contract Behaviors: As smart contracts ex-
ecute on a decentralized system and interact with other parties,
several ambiguities in their behaviors may arise. One possible
case is unexpected states caused by miner-dependent transac-
tion ordering. As disclosed in previous papers [18, 19, 20],
miners can freely choose the order of deploying transactions,
and contract states become non-trivial. Also, many contracts
include logic to interact with off-chain sources to obtain
necessary data. However, the sources can provide unexpected
data [114], and even if they do not, the decentralized environ-
ment may result in nodes receiving different data. As smart
contracts quite often behave differently depending on received
data, their behaviors can be non-deterministic. The last factor
of behavior ambiguity is code opacity that most contracts do
not have source code available. If interacting contracts are
opaque, contract behaviors become ambiguous.

Existing papers adopted a timed automata model and the
BIP framework [115] to model smart contract behaviors
in their execution environments. Andrychowicz et al. [62]
proposed a framework that models each party into a timed

automaton and verified two Bitcoin contracts. Also, Abdellatif
and Brouscmiche [53] leveraged the BIP framework and
expressed each party as a combination of finite-state automata.
While the two papers provided novel modeling approaches,
they still do not enable code-level analysis in the presence of
various parties such as users and miners.

2) Unstable Language Semantics: A smart contract is yet
another program, implemented in a programming language.
However, existing languages either lack language specifica-
tions or undergo continuous semantic changes due to security
pitfalls. Solidity has an official documentation [7], but has
frequent version updates [21] to address such pitfalls. One
specific example is an uninitialized storage pointer addressed
in the version 0.5.0 release. An uninitialized variable of array
or user-defined types was used to point to the first storage slot
by default and might have corrupted the storage. From version
0.5.0 onwards, the issue does not arise, but many contracts
already compiled by previous versions still remain deployed
on the blockchain, which may be vulnerable.

3) Lack of Clear Property Definition: Although many at-
tempts have focused on detecting vulnerable contracts, they
lack clear property definitions for vulnerabilities. The patterns
that previous security tools defined do not necessarily imply
vulnerabilities. For example, OYENTE just checks the exis-
tence of two traces with different Ether flows and reports it
as the transaction order vulnerability. Defining safety/liveness
properties is a mandatory task for precise static analysis
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of smart contracts. The decentralized and multi-transactional
environments make the task non-trivial, and Sergey and Hobor
[116] suggested that the analogy with concurrent objects in
shared memory can give an intuition.

MAIAN [23] is one early approach to define trace properties
of target vulnerabilities. They defined greediness, prodigality,
and suicidality of contracts in terms of safety/liveness proper-
ties and enabled analysis of multiple contract invocations. An-
other approach is a set of security properties that Grishchenko
et al. [36] defined. They defined call integrity, atomicity, and
independence of miners in terms of hyper/safety properties and
presented how known attacks violate the properties. However,
both work cover only a limited range of possible security
threats and cannot detect other kinds of vulnerabilities.

B. Directions in Future Research

From the observations above, we suggest directions in future
research of smart contract analysis.

1) Language Design: Researchers have been designing new
languages amenable for analysis. Following the trend, it seems
promising to design a new language with fully specified se-
mantics. An example language is Scilla [117], a smart contract
intermediate-level language designed both as an independent
framework and a compilation target. It models contracts as
communicating automata and provides its embedding into the
Coq [118] proof assistant. The separation between in-contract
computation and explicit communication enabled a principled
semantic specification and formal reasoning over contract be-
haviors. As translating Solidity to Scilla is possible, analyzing
Solidity programs is possible by analyzing the translated Scilla
programs. Although the current syntax supports a small subset
of Solidity, it showed how designing a new language design
can aid smart contract analysis.

2) Type-Based Approaches: Enriching a language with an
expressive type system is another way to analyze smart
contracts. It would be especially beneficial in smart contract
context, because currently popular languages do not support
strong type checking, although most of them are statically-
typed. For example, Solidity programs compiled before the
version 0.5.0 allow explicit conversions of contracts with
the address type and any other contract types, because the
previous version compilers do not check whether they adhere
to their target types. While adopting a strong type system
for smart contracts is still in its early stage, Pettersson and
Ebstroom [119] first showed how dependent and polymorphic
types can enable smart contract analysis. Specifically, through
implementing the concepts in Idris [120], they statically de-
tected the unexpected state vulnerability and prevented the
privacy violation vulnerability. Another type-based approach
was Lolisa [121], a large subset of Solidity. It has a stronger
static type system than Solidity for enhanced type safety.

3) Machine Learning: Following the popularity of machine
learning, researchers have also started to adopt learning mod-
els. Tann et al. [38] adopted a LSTM model to detect trace
vulnerabilities. Huang [39] trained a CNN model [122] by
translating a large set of Ethereum bytecode into RGB color

code, and the model automatically analyzes input bytecode to
report potential compiler bugs. Liu et al. [40] parsed contracts
into a list of tokens and leveraged an N-gram language
model to audit smart contracts automatically. Machine learning
techniques may improve the scalability and accuracy of smart
contract analysis research.

4) Rising Platforms and Languages: One observation from
the survey is that most research focused on Ethereum for
platform and Solidity and/or EVM bytecode for language.
However, the blockchain community keeps evolving very fast,
and the most popular platform and language at one time can
soon turn out-dated. For example, Hyperledger Fabric [123]
set up by the Linux Foundation is gaining its popularity as
a viable Ethereum alternative. It provides a set of JavaScript-
based tools for developers to implement smart contracts more
easily and efficiently. Another rising platform is EOS [52],
which employs the proof-of-stack consensus algorithm with
EOS tokens. Serpent [6] is a popular language for Ethereum
developers because the syntax is very similar to Python [124].
Many other platforms and languages keep appearing as well.
Since blockchain movement is fast and has no standardization,
research on such platforms and languages seems promising.

V. CONCLUSION

Blockchain is gaining its popularity with many applications,
along with the support of smart contracts. However, smart con-
tracts contain several security drawbacks, which led to massive
analysis research. This paper presented the first comprehensive
survey over smart contract analysis by collecting 391 papers,
extracting 67 relevant ones, and classifying them into three
dominant topics with further classifications: static analysis for
vulnerability detection, static analysis for program correctness,
and dynamic analysis.

Based on the comprehensive study, we discussed unsolved
challenges and directions in future research. The biggest
challenge is ambiguity in program behaviors arisen from trans-
action ordering dependency, reliance on off-chain sources, and
code opacity. Unstable semantics of programming languages
and lack of clear property definitions for vulnerabilities are
two other unsolved challenges. We propose that designing new
languages or type systems is a promising research direction,
as linguistic supports can ease smart contract analysis. Also,
adopting machine learning techniques in this domain is at an
early stage with large potentials. Lastly, research on rising plat-
forms and scripting languages seems promising, considering
that blockchain is still evolving very fast. We believe that our
survey can serve as not only a checkpoint of massive research
on smart contract analysis but also a promising guidance of
future research.

ACKNOWLEDGMENT

This work was supported by National Research Founda-
tion of Korea (NRF) (Grants NRF-2017R1A2B3012020 and
2017M3C4A7068177) and the Institute for Information &
communications Technology Promotion(IITP) grant funded by
the Korea government (MSIT) (2018-0-00251).



(1

[2]

(3]

[4]
(3]
(6]

[7]
[8]
[91

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
Proceedings of the IEEE International Congress on Big Data, Dec.
2017.

N. Lindner.  Applications of  blockchain to financial
services: Three banking wuse cases. [Online]. Available:
https://finsia.com/insights/news/news-article/2018/05/10/applications-

of-blockchain-to-financial-services-three-banking-use-cases

J.  Rampton. Five applications for blockchain in your
business. [Online]. Available: https://execed.economist.com/blog/
industry-trends/5-applications-blockchain- your-business

ConsenSys. 5 incredible blockchain IoT applications. [Online]. Avail-
able: https://blockgeeks.com/5-incredible-blockchain-iot-applications/
S. Nosikov. What are smart contracts? [Online]. Available: https:
/Iwww .cryptoninjas.net/what-are-smart-contracts/

K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. A
programmer’s guide to Ethereum and Serpent. [Online]. Available:
https://mc2-umd.github.io/ethereumlab/docs/serpent_tutorial.pdf

Solidity  official documentation. [Online].  Available: https:
//solidity.readthedocs.io/en/v0.5.1/
Vyper official documentation. [Online].  Available: https:

/Ivyper.readthedocs.io/en/latest/

M. Bartoletti and L. Pompianu, “An empirical analysis of smart
contracts: Platforms, applications, and design patterns,” in Proceedings
of the International Conference on Financial Cryptography and Data
Security, Apr. 2017.

Bitcoin news and technology source. [Online]. Available: https:
/Iwww .bitcoin.com

Ethereum project. [Online]. Available: https://www.ethereum.org

D. Siegel. Understanding the DAO attack. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists

S. Palladino. The parity wallet hack explained. [On-
line]. Available: https://blog.zeppelin.solutions/on-the-parity-wallet-
multisig-hack-405a8c12e8f7

S. Baghla. Origin of Bitcoin: A brief history from 2008 crisis to present
times. [Online]. Available: https://www.analyticsindiamag.com/origin-
bitcoin-brief-history/

A. Barkley. Vitalik Buterin and Ethereum: Background and history.
[Online]. Available: https://cryptodaily.co.uk/2018/12/vitalik-buterin-
and-ethereum-background-and-history
Cryptotvplus. Blockchain business.
cryptotvplus.com/ethereum/

Bitcoin wiki: Script. [Online]. Available: https://en.bitcoin.it/wiki/
Script

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
Ethereum smart contracts,” in Proceedings of the International Con-
ference on Principles and Security and Trust, Apr. 2017.
A. Manning. Solidity security: Comprehensive list
attack vectors and common anti-patterns. [Online].
https://blog.sigmaprime.io/solidity-security.html
Ethereum smart contract best practices: known attacks.
[Online]. Available: https://consensys.github.io/smart-contract-best-
practices/known_attacks/

GitHub: Solidity version releases.
github.com/ethereum/solidity/releases
L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the ACM Conference on
Computer and Communications Security, Oct. 2016.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Savena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
Annual Computer Security Applications Conference, Dec. 2018.

T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in Proceedings of the International
Conference on Software Analysis, Evolution, and Reengineering, Feb.
2017.

J. Krupp and C. Rossow, “teEther: Gnawing at Ethereum to automati-
cally exploit smart contracts,” in Proceedings of the USENIX Security
Symposium, Aug. 2018.

J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang, “sCompile: Critical
path identification and analysis for smart contracts,” Aug. 2018.
[Online]. Available: https://arxiv.org/abs/1808.00624

J. Valaska. Summary of the common smart contracts vulnerabilities.

[Online]. Available: https://

of known
Available:

[Online]. Available: https:/

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[Online]. Available: https://nethemba.com/summary-of-the-common-
smart-contracts-vulnerabilities/

C. F. Torres, M. Steichen, and R. State, “The art of The scam:
Demystifying honeypots in Ethereum smart contracts,” Feb. 2019.
[Online]. Available: https://arxiv.org/abs/1902.06976

A. Li and F. Long, “Detecting standard violation errors in smart
contracts,” Dec. 2018. [Online]. Available: https://arxiv.org/abs/
1812.07702

P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Jan. 1977.

P. Tsankov, A. Dan, D. Draschsler-Cohen, A. Gervais, F. Bunzil, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, Oct. 2018.

N. Grech, M. Kong, A. Jurisevic, L. Brent, and B. Scholz, “MadMax:
Surviving out-of-gas conditions in Ethereum smart contracts,” in Pro-
ceedings of the Object-Oriented Programming, Systems, Languages &
Applications, Nov. 2018.

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” Sep. 2018. [Online]. Available:
https://arxiv.org/abs/1809.03981

GitHub: The Souffle project. [Online]. Available: https://github.com/
souffle-lang/souffle

I. Grishchenko, M. Maffei, and C. Schneidewind, ‘“Foundations and
tools for the static analysis of Ethereum smart contracts,” in Proceed-
ings of the International Conference on Computer Aided Verification,
Jul. 2018.

——, “A semantic framework for the security analysis of Ethereum
smart contracts,” in Proceedings of the International Conference on
Principles of Security and Trust, Apr. 2018.

S. Kalra, S. Goel, and M. Dhawan, “Zeus: Analyzing safety of smart
contracts,” in Proceedings of the Network and Distributed System
Security Symposium, Feb. 2018.

W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong,
“Towards safer smart contracts: A sequence learning approach
to detecting security threats,” Nov. 2018. [Online]. Available:
https://arxiv.org/abs/1811.06632

T. H.-D. Huang, “Hunting the Ethereum smart contract: Color-inspired
inspection of potential attacks,” Jul. 2018. [Online]. Available:
https://arxiv.org/abs/1807.01868

H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: Towards
semantic-aware security auditing for Ethereum smart contracts,” in
Proceedings of the ACM/IEEE International Conference on Automated
Software Engineering, Sep. 2018.

S. Tikhomirov, E. Voskresenskaya, and I. Ivanitskiy, “SmartCheck:
Static analysis of Ethereum smart contracts,” in Proceedings of the
International Workshop on Emerging Trends in Software Engineering
on Blockchain, May 2018.

XPath tutorial. [Online]. Available: https://www.w3schools.com/xml/
xpath_intro.asp

K. Bansal, E. Koskinen, and O. Tripp, “Automatic generation of
precise and useful commutativity conditions (extended version),” in
Proceedings of the Tools and Algorithms for Construction and Analysis
of Systems, Apr. 2018.

C. Peng, S. Akca, and A. Rajan, “SIF: A framework for solidity
code instrumentation and analysis,” May 2019. [Online]. Available:
https://arxiv.org/abs/1905.01659

J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis
framework for smart contracts,” Aug. 2019. [Online]. Available:
https://arxiv.org/abs/1908.09878

Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,
“SmartEmbed: A tool for clone and bug detection in smart contracts
through structural code embedding,” Aug. 2019. [Online]. Available:
https://arxiv.org/abs/1908.08615

WebAssembly. [Online]. Available: https://developer.mozilla.org/en-
US/docs/WebAssembly

B. Muller, “Smashing Ethereum smart contracts for fun and real profit,”
in Proceedings of the Hack In The Box Security Conference, Apr. 2018.
Y. Feng, E. Torlak, and R. Bodik, “Precise attack synthesis for
smart contracts,” Feb. 2019. [Online]. Available: https://arxiv.org/abs/
1902.06067



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “EASYFLOW:
Keep Ethereum away from overflow,” Nov. 2018. [Online]. Available:
https://arxiv.org/abs/1811.03814

L. Quan, L. Wu, and H. Wang, “EVulHunter: Detecting fake transfer
vulnerabilities for EOSIO’s smart contracts at Webassembly-level,”
Jun. 2019. [Online]. Available: https://arxiv.org/abs/1906.10362
Katalyse.io. EOS platform - what you should know.
[Online]. Available: https://cryptodigestnews.com/eos-platform-what-
you-should-know-58da830d2aa8

T. Abdellatif and K.-L. Brouscmiche, “Formal verification of smart
contracts based on users and blockchain behaviors models,” in Pro-
ceedings of the International Workshop on Blockchains and Smart
Contracts, Feb. 2018.

K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in Proceedings of the European Symposium on
Programming, Apr. 2018.

A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid:
Correct-by-design smart contracts for Ethereum,” Jan. 2019. [Online].
Available: https://arxiv.org/abs/1901.01292

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, and S. Tonetta, “The nuXmv sym-
bolic model checker,” in Proceedings of the International Conference
on Computer Aided Verification, Jul. 2014.

Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born,
and 1. Naseer, “Formal specification and verification of smart
contracts for Azure blockchain,” Dec. 2018. [Online]. Available:
https://arxiv.org/abs/1812.08829

A. Lal, S. Qadeer, and S. K. Lahiri, “A solver for reachability modulo
theories,” in Proceedings of the International Conference on Computer
Aided Verification, Jul. 2012.

Microsoft  Azure  blockchain. [Online].
/lazure.microsoft.com/en-us/solutions/blockchain/
N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, and R. Zunino,
“Developing secure Bitcoin contracts with BitML,” May 2019.
[Online]. Available: https://arxiv.org/abs/1905.07639

M. Bartoletti and R. Zunino, “Verifying liquidity of Bitcoin contracts,”
May 2019. [Online]. Available: https://arxiv.org/abs/1905.07639

M. Andrychowicz, S. Dziembvowski, D. Malinowski, and L. Mazurek,
“Modeling Bitcoin contracts by timed automata,” in Proceedings of the
International Conference on Formal Modeling and Analysis of Timed
Systems, Sep. 2014.

Uppaal model checker. [Online]. Available: http://www.uppaal.org

E. Shishkin, “Debugging smart contract’s business logic using
symbolic model-checking,” Dec. 2018. [Online]. Available: https:
//arxiv.org/abs/1812.00619

R. van der Meyden, “On the specification and verification of
atomic swap smart contracts,” Nov. 2018. [Online]. Available:
https://arxiv.org/abs/1811.06099

P. Gammie and R. van der Meyden, “MCK: Model checking the logic
of knowledge,” in Proceedings of the International Conference on
Computer Aided Verification, Jul. 2004.

S. Amani, M. Begel, M. Bortin, and M. Staples, “Towards verifying
Ethereum smart contract bytecode in Isabelle/HOL,” in Proceedings of
the ACM SIGPLAN International Conference on Certified Programs
and Proofs, Jan. 2018.

Y. Hirai. Formal verification of deed contract in Ethereum name
service. [Online]. Available: https://yoichihirai.com/deed.pdf
Maurelian. Explaining the Ethereum namespace auction. [Online].
Available: https://medium.com/the-ethereum-name- service/explaining-
the-ethereum-namespace-auction-241bec6ef751

D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Rosu, “A formal
verification tool for Ethereum VM bytecode,” in Proceedings of the
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Nov. 2018.

X. Chen, D. Park, and G. Rosu, “Language-independent approach to
smart contracts verification,” in Proceedings of the International Sym-
posium On Leveraging Applications of Formal Methods, Verification
and Validation, Nov. 2018.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Short paper: Formal verification of smart
contracts,” in Proceedings of the ACM Workshop on Programming
Languages and Analysis for Security, Oct. 2016.

E. Albert, J. Correas, P. Gordillo, G. Roméan-Diez, and A. Rubio,

Available:  https:

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

“SAFEVM: A safety verifier for Ethereum smart contracts,” Jun.
2019. [Online]. Available: https://arxiv.org/abs/1906.04984

A higher-order effectful language designed for program verification.
[Online]. Available: https://www.fstar-lang.org/#talks

International competition on software verification. [Online]. Available:
https://gitlab.com/sosy-lab/sv-comp

A. Hajdu and D. Jovanovi¢, “solc-verify:
for Solidity smart contracts,” Jul. 2019.
https://arxiv.org/abs/1907.04262

D. Annenkov and B. Spitters, “Towards a smart contract verification
framework in Coq,” Jul. 2019. [Online]. Available: https://arxiv.org/
abs/1907.10674

Bruno Bernardo and Raphaél Cauderlier and Zhenlei Hu and
Basile Pesin and Julien Tesson, “Mi-Cho-Coq, a framework for
certifying Tezos smart contracts,” Sep. 2019. [Online]. Available:
https://arxiv.org/abs/1909.08671

A. Flores-Montoya and R. Hihnle, “Resource analysis of complex
programs with cost equations,” in Proceedings of the Asian Symposium
on Programming Languages and Systems, Nov. 2014.

A. Mavridou and A. Laszka, “Designing secure Ethereum smart
contracts: A finite state machine based approach,” in Proceedings of
the International Conference on Financial Cryptography and Data
Security, Mar. 2018.

, “Tool demonstration: FSolidM for designing secure Ethereum
smart contracts,” Feb. 2018. [Online]. Available: https://arxiv.org/abs/
1802.09949

D. Suvorov and V. Ulyantsev, “Smart contract design meets state
machine synthesis: Case studies,” Jun. 2019. [Online]. Available:
https://arxiv.org/abs/1906.02906

V. Zakhary, D. Agrawal, and A. E. Abbadi, “Transactional smart
contracts in blockchain systems,” Sep. 2019. [Online]. Available:
https://arxiv.org/abs/1909.06494

S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VeriSmart: A highly
precise safety verifier for Ethereum smart contracts,” Aug. 2019.
[Online]. Available: https://arxiv.org/abs/1908.11227

E. Albert, P. Gordillo, A. Rubio, and I. Sergey, “Running on fumes—
preventing out-of-gas vulnerabilities in Ethereum smart contracts
using static resource analysis,” Nov. 2018. [Online]. Available:
https://arxiv.org/abs/1811.10403

J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity,
vol. 2, no. 2, Dec. 2018.

B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Sep.
2018.

A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting
the laws of order in smart contracts,” Oct. 2018. [Online]. Available:
https://arxiv.org/abs/1810.11605

V. Wiistholz and M. Christakis, “Harvey: A greybox fuzzer for
smart contracts,” May 2019. [Online]. Available: https://arxiv.org/abs/
1905.06944

——, “Targeted greybox fuzzing with static lookahead analysis,” May
2019. [Online]. Available: https://arxiv.org/abs/1905.07147

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the
IEEE/ACM International Conference on Software Engineering: Com-
panion, Jun. 2018.

H. Wang, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
Sep. 2019. [Online]. Available: https://arxiv.org/abs/1909.06605

M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, 2009.
S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinet-
zky, M. Sagiv, and Y. Zohar, “Online detection of effectively callback
free objects with applications to smart contracts,” in Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Jan. 2018.

T. Cook, A. Latham, and J. H. Lee, “DappGuard: Active monitoring
and defense for Solidity smart contracts,” 2017. [Online]. Available:
https://courses.csail.mit.edu/6.857/2017/project/23.pdf

C. Colombo, J. Ellul, and G. J. Pace, “Contracts over smart contracts:
Recovering from violations dynamically,” in Proceedings of the Inter-
national Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, Nov. 2018.

A modular verifier
[Online]. Available:




[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]
[119]

[120]

[121]

GitHub:  ContractLarva:  Runtime  verification of  Solidity
smart contracts. [Online]. Available: https://github.com/gordonpace/
contractLarva

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” Dec. 2018.
[Online]. Available: https://arxiv.org/abs/1812.05934

K. Sen, “Concolic testing,” in Proceedings of the International Con-
ference on Automated Software Engineering, 2007.

K. Weiss and J. Schiitte, “Annotary: A concolic execution system
for developing secure smart contracts,” Jul. 2019. [Online]. Available:
https://arxiv.org/abs/1907.03868

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” Jul.
2019. [Online]. Available: https://arxiv.org/abs/1907.03890

Z. Yang and H. Lei, “FEther: An extensible definitional interpreter for
smart-contract verifications in Coq,” Oct. 2018. [Online]. Available:
https://arxiv.org/abs/1810.04828

Z. Yang, H. Lei, and W. Qian, “A hybrid formal verification
system in Coq for ensuring the reliability and security of Ethereum-
based service smart contracts,” Feb. 2019. [Online]. Available:
https://arxiv.org/abs/1902.08726

H. Wu, X. Wang, J. Xu, W. Zou, L. Zhanga, and Z. Chen, “Mutation
testing for Ethereum smart contract,” Aug. 2019. [Online]. Available:
https://arxiv.org/abs/1908.03707

P. Hartel and R. Schumi, “Gas limit aware mutation testing
of smart contracts at scale,” Sep. 2019. [Online]. Available:
https://arxiv.org/abs/1909.12563

L. Breidenbach, P. Daian, F. Tramer, and A. Juels, “Enter the hydra:
Towards principled bug bounties and exploit-resistant smart contracts,”
in Proceedings of the USENIX Security Symposium, Aug. 2018.

L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Proceedings of the
International Symposium on Fault-Tolerant Computing, Jun. 1995.

F. Guth, V. Wiistholz, M. Christakis, and P. Miiller, “Specification
mining for smart contracts with automatic abstraction tuning,” Jul.
2018. [Online]. Available: https://arxiv.org/abs/1807.07822

G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,” in
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Jan. 2002.

P. Hartel and M. van Staalduinen, “Truffle tests for free — replaying
Ethereum smart contracts for transparency,” Jul. 2019. [Online].
Available: https://arxiv.org/abs/1907.09208

Truffle Suite: Sweet tools for smart contracts. [Online]. Available:
https://www.lazenca.net/display/TEC/04.Concolic+execution

T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An adaptive gas cost mechanism for Ethereum to defend
against under-priced DoS attacks,” in Proceedings of the International
Conference on Information Security Practice and Experience, Dec.
2017.

DASP - top 10. [Online]. Available: https://dasp.co

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier:
An authenticated data feed for smart contracts,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security,
Oct. 2016.

S. Yovine. BIP: Language and
component-based construction. [Online].
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
173E4B326BBB9227C884DEA ACEF72323%doi=
10.1.1.543.7558&rep=rep1 &type=pdf

I. Sergey and A. Hobor, “A concurrent perspective on smart contracts,”
in Proceedings of the International Conference on Financial Cryptog-
raphy and Data Security, Apr. 2017.

I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G.
Hao, “Safer smart contract programming with Scilla,” in Proceedings
of the Object-Oriented Programming, Systems, Languages & Applica-
tions, Oct. 2019.

The Coq proof assistant. [Online]. Available: https://coq.inria.fr

J. Pettersson and R. Ebstroom, “Safer smart contracts through type-
driven development,” Master’s thesis, Chalmers University of Technol-
ogy, 2016.

A language with dependent types.
/Iwww .idris-lang.org

Z. Yang and H. Lei, “Lolisa: Formal syntax and semantics for a

tools for
Available:

[Online]. Available: https:

[122]

[123]

[124]

subset of the Solidity programming language,” Mar. 2018. [Online].
Available: https://arxiv.org/abs/1803.09885

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of
a convolutional neural network,” in Proceedings of the International
Conference on Engineering and Technology, 2017.

A blockchain framework by the Linux foundation. [Online]. Available:
https://www.hyperledger.org/projects/fabric

C. Seberino. Serpent: Introduction to the best Ethereum
classic smart contract language. [Online]. Available: https:
/lethereumclassic.github.io/blog/2017-02- 10-serpent/



