
EtherDi�er: Di�erential Testing on RPC Services of
Ethereum Nodes

Shinhae Kim
The A�liated Institute of ETRI

Daejeon, South Korea
shinhae1106@nsr.re.kr

Sungjae Hwang∗

Sungkyunkwan University
Suwon, South Korea
sungjaeh@skku.edu

ABSTRACT

Blockchain is a distributed ledger that records transactions among

users on top of a peer-to-peer network. Among all, Ethereum is the

most popular general-purpose platform and its support of smart

contracts led to a new form of applications called decentralized

applications (DApps). A typical DApp has an o�-chain frontend

and on-chain backend architecture, and the frontend often needs

interactions with the backend network, e.g., to acquire chain data

or make transactions. Therefore, Ethereum nodes implement the

o�cial RPC speci�cation and expose a uniform set of RPC methods

to the frontend. However, the speci�cation is not su�cient in two

points: (1) lack of clari�cation for non-deterministic event handling,

and (2) lack of speci�cation for invalid arguments. To e�ectively

disclose any deviations caused by the insu�ciency, this paper in-

troduces EtherDiffer that automatically performs di�erential

testing on four major node implementations in terms of their RPC

services. EtherDiffer �rst generates a non-deterministic chain

by multi-concurrent transactions and propagation delay. Then, it

applies our key techniques called property-based generation and

type-preserving mutation to generate both semantically-valid and

semantically-invalid-yet-executable test cases. EtherDiffer exe-

cutes the test cases on target nodes and reports any deviations in

error handling or return values. The evaluation showed the e�ec-

tiveness of our test case generation techniques with the success

ratios of 98.8% and 95.4%, respectively. Also, EtherDiffer detected

48 di�erent classes of deviations including 11 implementation bugs

such as crash and denial-of-service bugs. We reported 44 of the de-

tected classes to the speci�cation and node developers and received

acknowledgements as well as bug patches. Lastly, it signi�cantly

outperformed the o�cial node testing tool in every technical aspect.

We believe that our research �ndings can contribute to more stable

DApp ecosystem by reducing the inconsistencies among nodes.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Theory of computation→ Program analysis; • Se-

curity and privacy→ Distributed systems security.

∗Sungjae Hwang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616251

KEYWORDS

blockchain, ethereum nodes, rpc services, di�erential testing

ACM Reference Format:

Shinhae Kim and Sungjae Hwang. 2023. EtherDi�er: Di�erential Testing on

RPC Services of Ethereum Nodes. In Proceedings of the 31st ACM Joint Euro-

pean Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA,

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3611643.

3616251

1 INTRODUCTION

A blockchain is a distributed ledger on top of a peer-to-peer network

and records transactions among users. It is technically a growing list

of data structures called blocks, and each peer shares the same copy

of the list to prevent any arbitrary modi�cations. A block contains

various transactional and network state data such as transactions,

event logs, and account states. When a user submits a transaction,

one of the peers forms a block with the transaction and broadcasts

it to the network. Once received, each peer individually validates

the incoming block and appends it at the end of its chain. Since in-

troduced by Satoshi Nakamoto in 2009 [36], blockchain technology

has made much progress and became a top future trend [33].

Out of all, Ethereum is the most popular general-purpose block-

chain platform with 199 billion dollars of market capitalization [7].

It consists of Ethereum peers referred to as “nodes” and supports

general-purpose smart contracts. The contracts are programs that

are implemented in high-level programming languages like So-

lidity [44] and deployed on the network. Users can execute their

functions by submitting transactions with contract addresses and

arguments speci�ed. As smart contracts enable the automation of

service logic, there has been a popularity increase in decentralized

applications (DApps). According to statistics [6], there exist 2,855

Ethereum DApps spanning over various services like payments and

auctions, and 31,590 users made a total of 79,550 transactions in a

single day. Also, the top 10 DApps have the transaction volume of

approximately 6.88 billion dollars in total [8].

A decentralized application consists of an o�-chain frontend

and an on-chain backend. The frontend is what users interact with,

and the backend is a number of smart contracts to handle core ap-

plication logic. However, the o�-chain component needs frequent

interactions with its backend network for e.g., acquiring chain

states or making new transactions. Therefore, Ethereum nodes of-

fer remote procedure call (RPC) services [15] and expose a set of

RPC methods that the frontend can rely on. Meanwhile, there are

a number of di�erent implementations of Ethereum nodes in dif-

ferent programming languages. According to the o�cial Ethereum

page [16]:

1333

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616251
https://doi.org/10.1145/3611643.3616251
https://doi.org/10.1145/3611643.3616251
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616251&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

“This makes the network stronger and more diverse.

The ideal goal is to achieve diversity without any client

dominating to reduce any single points of failure.”

To enable uniform RPC services among nodes, the Ethereum

Foundation de�nes an o�cial speci�cation [12] that their RPC

method implementations should comply to. The speci�cation has a

brief description of each method and de�nes regular expressions

for valid arguments and return values. However, the speci�cation is

not su�cient in two points. First, it has no clari�cation on expected

behaviors in case of non-deterministic chain events. For example,

while there was a question in Ethereum Magicians forum [38]:

“What’s the expected behavior of eth_getLogs if the block-

Hash does not correspond to any block? This is not just

a theoretical consideration, since chain reorganizations

might cause a blockHash to no longer be valid.”,

the questioner con�rmed that some implementations return -32000

error code with an “unknown block” message, while others sim-

ply return an empty array. Second, the speci�cation does not state

anything on return values in case of invalid arguments such as

values out of the allowed ranges. While there was an attempt to

standardize error codes among nodes [2], the proposal has been

stagnant for more than three years. It can be problematic if nodes

behave di�erently as at least 63% of DApps rely on third-party node

providers [40] that maintain a pool of various types of nodes and

seamlessly serve with a di�erent one based on black-box load bal-

ancers [27]. For example, a bug report in Infura, the most dominant

node provider, showcases that a user unconsciously experienced

inconsistent results when they queried the latest block number [5].

To e�ectively investigate any deviations in terms of RPC services,

this paper presents the �rst syntax- and semantics-aware di�erential

testing approach. Also, we implemented EtherDiffer that applies

our approach to four di�erent node implementations that together

take up approximately 99.7% of the main Ethereum network [19].

To facilitate better understanding, we de�ne a few terms as follows:

De�nition 1 (Non-deterministic Chain). If a generation mechanism

produces a di�erent chain every time, the state of which is unpre-

dictable, the resulting chain is called non-deterministic.

De�nition 2 (Semantically-Validness). A test case is semantically-

valid if all method call arguments match the expected semantics.

De�nition 3 (Semantically-Invalidness). A test case is semantically-

invalid if any argument disconforms to the expected semantics.

Particularly, this research overcomes three technical challenges:

1) the generation of semantically-valid test cases, 2) the genera-

tion of semantically-invalid-yet-executable test cases, and 3) the

enforcement of chain state consistency among nodes prior to test

case executions. EtherDiffer �rst constructs a local network that

consists of four nodes, each from a di�erent implementation, as

well as auxiliary nodes for chain evolution. Then, it generates a

non-deterministic chain by making multiple-and-concurrent trans-

actions that actively produce event logs and state changes. Also, we

made minimum instrumentation on the nodes to mimic real-world

propagation delay and trigger non-deterministic chain events.

On top of the generated chain, EtherDiffer overcomes the �rst

two challenges by our key techniques: property-based generation

and type-preserving mutation. We �rst de�ned a domain-speci�c

language (DSL) that captures the type and semantic requirement,

which we call “property,” for each method argument. Then, we con-

verted the speci�cation of RPC-triggering methods into our DSL,

which we denote as specDSL. Based on specDSL, EtherDiffer gener-

ates semantically-valid template code where all arguments satisfy

their properties. The template code is yet another valid test case

but not bound to a speci�c RPC-serving node. Also, EtherDiffer

stochastically mutates one of the arguments to turn the template

code semantically-invalid, while preserving the executability. Then,

it produces a set of four test cases by binding the template code with

each target node and cross-checks their execution return values.

The last challenge is to enforce the chain state consistency among

nodeswhen executing test cases as its inconsistency can lead to false

alarms. EtherDiffer implements a two-phase architecture: gener-

ation and testing phase. During the generation phase, the auxiliary

nodes operate to evolve the chain. Then, once the chain reaches

the con�gured height, their operations stop and EtherDiffer be-

gins its testing phase after all target nodes are synced. Also, we

implemented a save-and-restore strategy as a transaction-sending

test case changes the original chain state. The evaluation showed

that our techniques generated both semantically-valid and invalid-

yet-executable test cases with the success ratios of 98.8% and 95.4%,

respectively. Also, EtherDiffer detected 48 deviation classes in-

cluding 11 implementation bugs such as crash and denial-of-service

bugs. We reported 44 of the detected classes and received acknowl-

edgements for our research �ndings as well as bug patches. Lastly,

EtherDiffer signi�cantly outperformed the o�cial testing tool

for Ethereum nodes in every technical aspect.

In short, the contributions of this paper are the followings:

• We present an approach that generates semantically-

valid test cases based on a speci�cation. Also, we pre-

sent a mutation strategy to produce invalid test cases

while preserving the executability. Our approaches can

be applied in other domains as well if speci�cations exist.

• Wepresent EtherDiffer that automatically reports de-

viations among four Ethereumnode implementations

that take up 99.7% of the mainnet. EtherDiffer found

48 classes of deviations, which include 11 implementation

bugs. We believe it can contribute to the stability of DApp

ecosystem and publicly opened the tool implementation.1

2 BACKGROUND

In this section, we explore the concepts highly related to our re-

search. We �rst explain the two factors that make blockchain non-

deterministic. Then, we present the architecture of typical DApps

as well as the necessity of using JavaScript libraries in development.

2.1 Blockchain Non-determinism

Blockchain is technically a growing list of blocks, and speci�cally-

con�gured nodes calledminers create them. However, as blockchain

operates on a large user base, multiple transactions concurrently

reside on the network, and it is upon the miner’s decision which

and how many transactions to include in a block. Therefore, it is

1[Link for EtherDiffer] https://github.com/JosephK95/EtherDi�er-public

1334

EtherDi�er: Di�erential Testing on RPC Services of Ethereum Nodes ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 1: Overall Architecture of EtherDiffer

Figure 2: Architecture of ERC20 Decentralized Application

completely non-deterministic which transactions a new block will

consist of. Also, the inclusion of di�erent transactions leads to di�er-

ent elements in other block �elds as well. For example, blocks con-

tain event logs emitted from smart contract executions. Therefore,

only the logs from chosen contract transactions become part of the

blocks. Another key factor that makes blockchain non-deterministic

is propagation delay. Ethereum has become a signi�cantly large

network with 5,649 nodes [19]. While each node propagates the

new block to its peers once received, a time di�erence in block

reception is inevitable. Therefore, the chain can have two blocks

with the same parent when a di�erent miner created another block

before perceiving the existence of a new block. Such event is called

“temporal fork,” and the chain evolves with either one of the blocks,

leading to “chain reorganization.” The left-over blocks drop o� the

canonical chain and become orphaned. However, their headers can

be still part of the canonical chain as “uncles” if subsequent miners

include them in their blocks under creation.

TheMerge. Since the initial launch in 2015, Ethereumhas adopted

proof-of-work (PoW) consensus mechanism [18] where miners for-

mulate blocks by solving cryptographic puzzles. Recently, Ethereum

switched to proof-of-stake (PoS) consensus mechanism [17] where

block proposers and validators participate in block formulation

by staking their Ether balances. However, the non-deterministic

factors remain exactly the same except that uncles no longer exist.

2.2 Ethereum DApps and JavaScript Libraries

A decentralized application consists of an user-interfacing frontend

and backend smart contracts. About 75% of DApps have web-based

frontends implemented in JavaScript [40], and the frontends need

frequent interactions with the backend network. However, as they

are o�-chain, Ethereum nodes serve as a bridge to the network

by exposing a set of RPC methods. For example, the user inter-

face of a crowdfunding DApp can display the pledge history by

making an eth_getLogs method call. Also, the frontend can update

the chain state by calling eth_sendTransaction method upon a new

user pledge. However, interacting directly with nodes is not practi-

cal for two reasons. First, it is cumbersome to make syntactically-

valid method calls as a lot of methods have error-prone parameters

such as 20 bytes-encoding hexadecimal addresses or an array of

32 bytes-encoding hexadecimal strings. Also, more importantly,

nodes have no support of event noti�cations. As blockchain has

non-deterministic characteristics, it is unpredictable when a new

transaction will be mined and con�rmed. Users would have to make

numerous repetitions of method calls to track their transactions.

Therefore, DApps leverage Ethereum JavaScript libraries that are

simple wrappers of RPC methods but support input formatters to

�lter out miss-typed arguments and callback-based event noti�ca-

tions. Figure 2 shows an example ERC20 decentralized application.

1335

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

The frontend �rst acquires two types of information by getAccounts

and getTransactionCount library methods at line 5 and 6: an address

which it has ownership of and the number of transactions made by

the address called nonce. Then, it sends a minting transaction to its

backend ERC20 smart contract by sendmethod, which resolves with

the transaction receipt once mined successfully. The nonce should

be incremented by one after each transaction, and invalid nonce

values can lead to various unexpected results including transaction

rejection or long-term pending [20]. However, as mentioned ear-

lier, users can unconsciously experience RPC service from di�erent

nodes. Therefore, it can be crucial if any node returns a deviated

nonce value for the getTransactionCount method call.

3 METHODOLOGY

To e�ectively investigate the deviations of RPC service, we im-

plemented EtherDiffer that automatically performs di�erential

testing on four Ethereum node implementations. In this section, we

�rst explain the overall architecture of EtherDiffer and how it

generates non-deterministic chains. Then, we present our domain-

speci�c language as well as two key techniques to generate test

cases based on the speci�cation converted into our DSL.

3.1 Overview

EtherDiffer �rst constructs a local network that consists of four

nodes, each from a di�erent implementation, as well as mining

nodes for chain evolution. The network is con�gured to activate

all mainnet features except the only di�erence that it adopts PoW

mechanism for block creation. However, the di�erence has no im-

pact on outcomes as the testing proceeds only after a consensus is

reached. Figure 1 shows the overall architecture upon the network

construction. EtherDiffer begins the generation phase where the

network generates a non-deterministic chain (sec. 3.2). Once the

chain reaches the con�gured height, EtherDiffer switches over

to the testing phase where it generates test cases and cross-checks

their execution results. For the test case generation, EtherDiffer

leverages web3.js, the o�cial Ethereum JavaScript library [3]. Par-

ticularly, we de�ned a domain-speci�c language that captures the

syntactic and semantic requirements for method arguments (sec.

3.3) and converted the library speci�cation into our DSL, which

we denote as specDSL. EtherDiffer �rst selects a method from

specDSL, and Generator produces semantically-valid template code

where all arguments satisfy their requirements (sec. 3.4). In ad-

dition, Mutator stochastically changes one of the arguments to a

semantically-invalid value while preserving its type (sec. 3.5). Lastly,

Test Case Converter instantiates a set of four test cases by binding

the template code with each target node. Once the executions are

completed, Error Checker reports if only a subset of nodes throw

errors while the others return values, and Value Checker reports if

their return values are not consistent to one another. The test cases

are wrapped with try-catch statements to property identify errors

while preserving the executions of EtherDiffer.

3.2 Non-deterministic Chain Generation

As explained in section 2.1, the two factors that make blockchain

non-deterministic are multiple-and-concurrent transactions and

B := typedef C C <: C propdef ? 3

C := C? | {[opt]? : : C} | t_Array(C) | C ∪ C

? := ?B | ?3 | {[opt]
? : : ?} | p_Array(?) | ? ∪ ?

3 := C " ([opt]? C q ? [∨ C q ?]?) | C 2 ." (C q ?)

2 := �.�<Es,Ev> (E0)

Figure 3: Syntax of our Domain-Speci�c Language

propagation delay. Likewise, EtherDiffer applies the factors to

its local network and generates a non-deterministic chain.

Multiple-and-Concurrent Transactions. EtherDiffer deploys ap-

plications, each of which consists of one or two smart contracts

that together provide a service. We leveraged the applications from

Solidity by Example [10], a well-known database that covers a wide

range of real-world applications. We �ltered those out that only

contain simple logic such as proxies and leveraged the remaining

12 applications. Upon their deployments, EtherDiffer operates

auxiliary nodes that repeatedly and concurrently send transactions

to the contracts. Particularly, each node is dedicated to a single

application to maximize the number of available transactions at a

time. Also, we de�ned transaction sequences for each application

that guarantee the execution completion while actively triggering

log emissions and state changes. In total, EtherDiffer generates a

chain based on 33 sequences consisted of 109 valid transactions.

Propagation Delay. To further induce non-determinism in our

chain, e.g., presence of temporal forks, there should be time delay

in block propagations among nodes. In other words, mining nodes

should create another block before perceiving the existence of a

new block. To trigger such occasions, we instrumented the mining

nodes to delay their block propagations within the period of a block

creation time multiplied by six. This re�ects the policy that mining

nodes can include uncle headers that are up to six-generations apart

from their blocks under creation.

3.3 Domain-Speci�c Language

For test case generation, EtherDiffer leverages the o�cial Ether-

eum JavaScript library, web3.js. To automate the processing of the

library speci�cation, we de�ned a domain-speci�c language that

captures the types and semantic requirements for method argu-

ments. Figure 3 shows the syntax of our DSL. The speci�cation B

consists of type de�nitions, subtype relations, property de�nitions,

and method declarations. A type C can be one of the primitive types

C? , an object type {[opt]? : : C}, an array type, or a union of two

types. The primitive types not only include basic JavaScript types

like t_Number and t_String, but also more constrained types like

t_Address and t_Hex32. An object type {[opt]? : : C} is a collection

of key-type pairs, some of which can be optional. Also, the DSL

captures subtype relations between types (C <: C). A property ? is a

semantic requirement that an argument should satisfy. A primitive

property is either a “static” property ?B or a “dynamic” property ?3 ,

depending on whether its value generation relies on other method

calls. For example, the properties p_Gas and p_Value are static as

1336

EtherDi�er: Di�erential Testing on RPC Services of Ethereum Nodes ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 4: Example Code Generation Based on Speci�cation in DSL

users can designate values as they want when sending transactions.

On the other hand, a dynamic property p_Nonce@(p_EOA) needs the

return value of getTransactionCountmethod call with its associated

address as �rst argument. An object property {[opt]? : : ?} de�nes

the requirement for an object type argument, where each key :

should satisfy the property ? if exists. To systematically derive prop-

erty de�nitions, we �rst extracted all existing parameters and clus-

tered those that accept the same type of arguments based on their

descriptions. Also, in case of any ambiguity, we referred to the o�-

cial Ethereum page for further clari�cation. A method declaration

3 either declares a standard method (C " ([opt]? C q ? [∨ C q ?]?))

or a contract-interaction method (C 2 ." (C q ?)). A standard method

is a simple wrapper of a node-exposing RPC method with one-to-

one correspondence. A contract-interaction method is yet another

wrapper but facilitates RPC method calls to interact with smart con-

tracts. A declaration speci�es the type and property (C q ?) of each

parameter as well as its return type. Particularly, standard methods

have zero or more parameters, each of which can be optional, while

contract-interaction methods have a single parameter. Also, the

parameters in standard methods can be disjunctive to allow di�er-

ent types of arguments. Figure 4-(a) shows the declarations of two

methods, which we will refer to throughout this section. The up-

per method has two parameters of a block and a transaction index

and returns the corresponding transaction in the block. The lower

method retrieves a history of transaction fees in the maximum

1024 blocks backwards from the second parameter block. For every

block, it sorts the fee values in ascending order and returns the

percentiles speci�ed by the third parameter. A contract transaction

2 is a pre�x for contract-interaction methods and corresponds to

calling the member function � in contract � with arguments E0 .

The subscripted values EB and EE represent transaction-level argu-

ments, msg.sender and msg.value, respectively. In total, we de�ned

32 types, 6 subtype relations, 31 properties, and 31 method declara-

tions. Also, as the testing proceeds in the same local network, we

leveraged the 109 transactions from the generation phase as well.

3.4 Property-Based Template Code Generation

EtherDiffer selects a target method from specDSL , and Generator

generates semantically-valid template code based on the GenTC

function in Algorithm 1. The template code is valid JavaScript code

but not bound to any RPC-serving node yet. For each property

of the selected method (Line 3), Generator �rst “instantiates” the

Algorithm 1: Template Code Generation

Input : Selected method in DSL (3)

Output : Generated template code (stmts)

1 function GenTC(3)

2 stmts← [], args← []

3 for ? in 3.props() do

4 ? ← InstProp(?)

5 stmts, arg← GenArg(stmts, ?)

6 args.push(arg)

7 stmts← GenCall(stmts, 3, args)

8 return stmts

Algorithm 2: Type-Preserving Mutation

Input : Template code (stmts)

Output :Mutated template code (stmts′)

1 function MutateTC(stmts)

2 call← stmts.pop()

3 arg← SelectArg(call)

4 ? ← PropLookUp(arg)

5 stmts, arg′← GenArg(stmts, ?)

6 stmts′← AppendNewCall(stmts, call, arg, arg′)

7 return stmts′

property if necessary (Line 4). Then, it generates a valid argument

by applying di�erent approaches depending on property types

(Line 5). Lastly, Generator produces a target method call with the

generated arguments (Line 7).

Property Instantiation. There exist several properties that should

be associated with speci�c accounts and others. For example, when

sending transactions, nonce parameter should receive the transac-

tion count of the sender account. Therefore, once a sender address

is generated, Generator instantiates the nonce property with the

address. Another example is the transaction index parameter of

getTransactionFromBlock in Figure 4-(a). As it is associated with

the �rst parameter block, Generator instantiates the index property

upon the generation of a block argument.

Static Property. A primitive property, which captures the seman-

tics of a primitive type parameter, is “static” if its value genera-

tion is possible without method calls. Static properties in most

1337

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

Table 1: Success Ratios of Valid and Invalid Test Case Executions

Test
Cases

Generated Properties
Total

Test
Cases

Mutated Types
Total

Static Dynamic Object Array Union Primitive Object Array Union

2,965 1,431 1,275 965 279 150 4,110 2,863 1,435 819 - 609 2,863
(98.8%) (98.8%) (98.8%) (97.6%) (99.6%) (99.3%) (98.6%) (95.4%) (99.4%) (86.8%) (0%) (99.3%) (95.4%)

35 17 15 24 1 1 58 137 8 125 - 4 137
(1.2%) (1.2%) (1.2%) (2.4%) (0.4%) (0.7%) (1.4%) (4.6%) (0.6%) (13.2%) (0%) (0.7%) (4.6%)

3,000 1,448 1,290 989 280 151 4,168 3,000 1,443 944 - 613 3,000

(a) Valid Test Cases (Error ? No: , Yes:) (b) Invalid Test Cases (Lib. Error ? No: , Yes:)

cases capture the user-assigning transaction parameters but also

other parameters whose values can be statically generated based

on their descriptions, e.g., a random integer in the speci�ed range

for p_Range(1,1024). We de�ned a Property-Generator for each static

property, which Generator leverages in case of a static property

parameter. For non-trivial cases like user-assigning values, we de-

signed the Property-Generator to return one of the values used in the

speci�cation code snippets as arbitrary value generation can lead to

execution failures like out-of-gas errors. Figure 4-(b) shows an exam-

ple of semantically-valid template code in a simpli�ed format. Gener-

ator produced “latest” for the �rst parameter as Property-Generator

of p_BlockNumber can return one of the pre-de�ned strings.

Dynamic Property. A primitive property is “dynamic” if its value

generation relies on method calls. Dynamic properties capture the

parameters that receive chain-stored values such as transaction and

block hashes. Therefore, it is necessary to make method calls at

runtime to acquire a valid property value. Also, it is often that meth-

ods should be called with certain arguments and/or postprocess

their return values. Therefore, we made a Mapping Table for each

dynamic property where each entry contains a method name, �xed

arguments if necessary, and post�xes that return a valid property

value when appended to the return value. Generator selects one of

the entries and chains with the method call result to generate a

dynamic property argument. In Figure 4-(b), the index property

was �rst instantiated to p_TxIdx@“latest” upon the generation of

aa0. Then, Generator looked up the Mapping Table in Figure 4-(c) and

made a getBlock method call with the associated “latest” value

(denoted as @_) and false to acquire the block without transaction

details. Lastly, it accessed the transaction attribute and returned a

valid index by applying the helper index method.

Compound Property. Aside from primitive properties, there exist

a number of object properties that capture object type parameters

such as transactions and log �lters. Generator recursively generates

a value for each object �eld following the above approaches and

merges into an object. An array property captures an array type

parameter, and Generator recursively generates values based on its

base property and forms them into an array. For a union property,

it randomly selects one of the properties and generates its value.

3.5 Type-Preserving Mutation

To investigate any deviations against semantically-invalid argu-

ments as well, Mutator stochastically turns the generated template

code into semantically-invalid code. While EtherDiffer enables

users to con�gure themutation probability, it is set to 50% by default.

The mutation is based on the MutateTC function in Algorithm 2

and satis�es two characteristics: single-argument mutation and

type preservation. To e�ectively examine one property at a time,

Mutator randomly selects a single argument in the target method

call (Line 3). In case of compound type arguments, it selects one of

the object �elds or array elements. Also, it is essential to preserve

the argument type as the library �lters out miss-typed arguments

and does not make RPC method calls in such cases. Therefore, Mu-

tator looks up a property from specDSL that has the same type with

but not equivalent to the original argument property (Line 4). It

also takes subtype relations into account during property selec-

tion. Then, Mutator generates a valid argument for the selected

property (Line 5) and appends the new method call, argument of

which is replaced with the generated value (Line 6). This approach

ensures both semantically-invalidness and executability as it makes

use of an unintended property with a compatible type. Figure 4-

(d) presents the mutated code from the template code. Mutator

selected p_Range(1,1024) and replaced the original index with a

semantically-invalid integer value while preserving t_Number. Fi-

nally, Test Case Converter instantiates a set of four test cases from

possibly-mutated template code, and Error Checker and Value Checker

report in case of respective deviations.

4 EVALUATION

EtherDiffer examines the deviations among four major Ethereum

nodes that take up 99.7% of themain network. Particularly, we chose

their most recent stable versions by the time of evaluation as our

targets: Geth v1.10.21-stable, Erigon 2022.07.04-alpha, Nethermind

v1.13.6, and Hyperledger Besu v22.4.4. To evaluate the e�ectiveness

of our techniques and disclose any deviations, we set up the follow-

ing research questions. Also, we compare EtherDiffer with the

o�cial node testing tool maintained by the Ethereum Foundation.

• RQ1 (E�ectiveness of TestCaseGeneration):Howmuch

do the semantically-valid test cases complete their execu-

tionswithout errors? Also, howmuch do semantically-invalid

test cases preserve their executability without library errors?

• RQ2 (Deviation and Bug Detection Capability): How

many deviations and bugs has EtherDiffer detected?

• RQ3 (Comparison with the O�cial Tool):How e�ective

is EtherDiffer compared to the o�cial testing tool for node

implementations?

1338

EtherDi�er: Di�erential Testing on RPC Services of Ethereum Nodes ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Overview of All Deviation Classes Found by EtherDiffer

Category Deviation Class Report RC Category Deviation Class Report RC

Invalid

Argument

Handling

(sec. 4.2.1)

(IAH-1) Number of Transactions in Invalid Block ✓S∗ ‡

Uncle

Access

(sec. 4.2.3)

(UA-1) Block Structure that Matches Uncle Hash ✓S∗ †‡

(IAH-2) Past Event Logs in Invalid Block ✓S∗ ‡ (UA-2) Uncle at Certain Index in Uncle Block ✓S∗ †‡

(IAH-3) Transaction at Certain Index in Invalid Block ✓S∗ ‡ (UA-3) Transaction at Certain Index in Uncle Block ✓S∗ †‡

(IAH-4) Number of Uncles in Invalid Block ✓S∗ ‡ (UA-4) Number of Uncles in Uncle Block ✓S∗ †‡

(IAH-5) Uncle at Certain Index in Invalid Block ✓S∗ †‡ (UA-5) Number of Transactions in Uncle Block ✓S∗ †‡

(IAH-6) Code of Speci�c Contract in Invalid Block ✓S∗ ‡
Method

Support

(sec. 4.2.4)

(MS-1) No Method for Pending Transaction List ✓[E∗,B] ‡

(IAH-7) Balance of Speci�c Address in Invalid Block ✓S∗ ‡ (MS-2) No Method for Account State Structures ✓E∗

(IAH-8) Nonce of Speci�c Account in Invalid Block ✓S∗ ‡ (MS-3) No Method for List of Account Addresses ✓E ‡

(IAH-9) Storage of Speci�c Contract in Invalid Block ✓S∗ ‡ (MS-4) No Method for Current Protocol Version ✓G ‡

(IAH-10) Account State Structure of Unknown Account ✓S∗ ‡

Fields

and

Formats

(sec. 4.2.5)

(FF-1) Field Di�erence in Uncle Block Structures ✓[G,E∗] †‡

(IAH-11) Past Event Logs in Wrong Block Range ✓S∗ ‡ (FF-2) Field Di�erence in Event Log Structures (AD) †‡

(IAH-12) Transaction Fee History in Wrong Block Range ✓S∗ ‡ (FF-3) Field Di�erence in Canonical Block Structures (AD) ‡

(IAH-13) Transaction in Block at Invalid Index ✓S∗ ‡ (FF-4) Field Di�erence in Receipt Structures (AD)

(IAH-14) Uncle in Block at Invalid Index ✓S∗ ‡ (FF-5) Field Di�erence in Transaction Structures ✓B∗ ‡

Gas

Estimation

and

Local

Execution

(sec. 4.2.2)

(GL-1) Improper Max Fee Parameter for Gas Estimation ✓S∗ ‡ (FF-6) Format Inconsistency in Contract Storage Keys ✓B∗ ‡

(GL-2) Low Gas Limit Parameter for Gas Estimation ✓S ‡ (FF-7) Format Inconsistency in Storage Slot Values (AD) ‡

(GL-3) High Gas Limit Parameter for Gas Estimation ✓S∗ ‡

Imple-

mentation

Bugs

(sec. 4.2.6)

(IB-1) Invalid Total Di�culty in Uncle Headers ✓[G,N∗,B] †‡

(GL-4) Invalid Transaction Type for Gas Estimation ✓S∗ ‡ (IB-2)Wrong Values in Account State Structures ✓N∗ ‡

(GL-5) Invalid Account Nonce for Gas Estimation ✓S∗ ‡ (IB-3)Wrong Log Index in Event Log Structures ✓B∗ †‡

(GL-6) Insu�cient Funds in Account for Gas Estimation ✓S∗ ‡ (IB-4)Wrong Log Identi�er in Event Log Structures ✓B∗ †‡

(GL-7) Improper Max Fee Parameter for Local Execution ✓S∗ ‡ (IB-5)Wrong Transaction Fee History in Block Range ✓B∗ ‡

(GL-8) Low Gas Limit Parameter for Local Execution ✓S∗ ‡ (IB-6)Wrong Gas Estimation for Contract Executions ✓[N∗,B∗]

(GL-9) Invalid Transaction Type for Local Execution ✓S∗ ‡ (IB-7) Crash Bug while Retrieving Past Event Logs ✓E∗ †‡

(GL-10) Invalid Account Nonce for Local Execution ✓S∗ ‡ (IB-8) DoS while Retrieving Past Event Logs ✓B∗ †‡

✓S: Speci�cation ✓G: Geth ✓E: Erigon ✓N: Nethermind ✓B: Besu

✓[..]: Multiple Nodes (AD): Acceptable Deviation ∗: Con�rmed or Patched

†: Detection Failure of rpc-compat Due to Chain Generation (sec. 4.3.1)

‡: Detection Failure of rpc-compat Due to Test Case Generation (sec. 4.3.2)

Table 3: Overview of Error Handling and Uncle Access Deviations of Node Implementations

IAH-1 IAH-2 IAH-3 IAH-4 IAH-5 IAH-6 IAH-7 IAH-8 IAH-9 IAH-10 IAH-11 IAH-12 IAH-13 IAH-14

• Geth null [] null null null Error Error Error Error Valacc [] Valfee null null

• Erig. null [] null null null Valcode* Error Error Error -** Error Valfee null null

• Neth. Error Error Error Error Error Error Error Error Error Valacc Error Error Error Error

• Besu null [] null null null Error* null 0 null Error [] Error null null

GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7 GL-8 GL-9 GL-10 UA-1 UA-2 UA-3 UA-4 UA-5

Error Valgas Valgas Valgas Valgas Valgas Error Error Valcall Valcall Valblock Valblock null Valnum Valnum

Error Valgas Error Valgas Valgas Error Error Valcall Valcall Valcall Error null Error null null

Valgas Error Valgas Error Error Valgas Valcall Valcall Error Error null Error Error Error Error

Valgas Valgas Valgas Valgas Valgas Valgas Error Error Valcall Valcall Valblock Valblock Valtx Valnum Valnum

*: Erigon and Besu can return Error and null respectively, depending on the argument. **: Erigon does not support the method. (see MS-2)

4.1 E�ectiveness of Test Case Generation

4.1.1 Semantically-Valid Test Cases. EtherDiffer leverages our

property-based technique to generate semantically-valid test cases.

To evaluate its e�ectiveness, we generated 3,000 valid test cases

and checked whether they successfully completed executions with-

out any errors. Table 1-(a) shows the result as well as the num-

bers of generated properties in corresponding test cases. The re-

sult con�rms the e�ectiveness of our technique as 2,965 valid test

cases completed their executions and 4,110 out of the total 4,168

properties belonged to the execution-completed ones. This ensures

that our technique generates a semantically-valid argument with

98.6% con�dence or even higher as some of the arguments in the

execution-failed test cases can be still valid. We manually investi-

gated the 35 failed test cases and con�rmed that each argument was

yet semantically-valid but resulted in errors when combined inmost

cases. For example, getPastLogsmethod receives two block number

arguments that together specify a block range to retrieve event

logs from. While EtherDiffer succeeded at generating a valid

argument for each block number, there were occasions when the

starting number was greater than the ending number, producing er-

rors. We believe that our future work to add semantic requirements

in argument combinations can eliminate the errors.

4.1.2 Semantically-Invalid Test Cases. EtherDiffer applies our

type-preserving mutation strategy to convert semantically-valid

test cases into invalid ones. To evaluate its e�ectiveness, we per-

formed mutations on 3,000 valid test cases and checked whether

the invalid test cases did not trigger library errors and returned

1339

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

results including node-produced errors. Table 1-(b) shows the result

as well as the mutated types in corresponding test cases. The result

con�rms that our mutation technique e�ectively preserves the exe-

cutability with 95.4% con�dence as 2,863 invalid test cases produced

no library errors. One thing to note is that there were no mutations

for arrays as each array type consists of a single property and thus

has no mutation candidate. We manually investigated the 137 failed

test cases and con�rmed that while each mutation successfully

preserved the type, they mostly failed as the library performs addi-

tional checks on transaction object arguments to reduce transaction

failures. For example, the majority of cases occurred as the mutated

gas value was smaller than the minimum required gas. We believe

that a more sophisticated mutation approach based on intersecting

with the original property can further improve the e�ectiveness.

4.2 Deviation and Bug Detection Capability

To detect any deviations among Ethereum node implementations,

we conducted 10 iterations of EtherDiffer. Particularly, we con-

�gured each iteration to generate a 300-height non-deterministic

chain and 600 test case sets with the default mutation probability.

In total, our di�erential testing was based on 6,000 test case sets

consisting of 24,000 test cases, and EtherDiffer detected error

deviations and value deviations in 1,536 and 1,693 test case sets,

respectively. We randomly selected 300 error-deviating and 300

value-deviating sets for manual investigation and con�rmed that

only 11 deviating sets were false positives, accounting for 1.8% of

the total. The false positives were derived from the deviations as

well, as the node implementations returned di�erent values during

the process of dynamic property generation. For the remaining true

positives, we clustered them into six major categories and 48 di�er-

ent classes as shown in Table 2. We analyzed each class further and

reported 44 deviation classes to either RPC speci�cation developers

or node developers based on the following criteria:

• (Report to Speci�cation: 29 Deviation Classes) The deviation

class was caused by the lack of clear speci�cation such as

error handling and uncle access.

• (Report to Node Developers: 15 Deviation Classes) The devi-

ation class was caused by node implementations that either

disconform to the speci�cation or have bugs.

We did not make reports for the remaining four classes as they

correspond to simply de�ning additional �elds in data structures.

For the rest of this section, we brie�y explain each of the deviation

categories found by EtherDiffer.

4.2.1 Invalid Argument Handling. EtherDiffer detected 14 devia-

tion classes in terms of handling invalid arguments of RPC method

calls. The classes can be grouped into four sub-categories based

on the argument types: (1) invalid blocks, (2) unknown accounts,

(3) wrong block ranges, and (4) invalid indices. While there exist

many RPC methods with a block parameter, EtherDiffer found

that node implementations handle nine of the methods in di�erent

ways when a given block argument is invalid. Table 3 shows the re-

turn values from each implementation. As the columns from IAH-1

to IAH-9 show, the return values vary in the range of the following:

null, [], an error, or even a normal value. Another �nding is that

even a single implementation handles the methods inconsistently.

For example, while Geth returns null or [] for �ve of the methods,

it just throws an error for the rest. Additionally, node implementa-

tions have divergent handling logic on �ve methods that receive

an account, a block range, or an index as an argument. When an

invalid argument is given, the range of possible return values is

the same as that of the invalid block case. Particularly, some imple-

mentations just return a normal account or transaction fee history

even if they do not actually exist. Although all the �elds are set

with zero, this can still lead to misconception of DApp developers.

Finding 1: Ethereum node implementations have divergent

handling logic on invalid arguments.

Finding 2: Even a single node implementation handles each

method in an inconsistent way.

4.2.2 Gas Estimation and Local Execution. The core component of

a decentralized application is its backend smart contracts which

implement the service logic. And as actual interactions with smart

contracts require transaction fees, the RPC interface o�ers two

ways of interactions without fees and enables users to validate their

transactions in advance: gas estimation and local contract execution.

However, while the interaction requires an object argument with

various �elds designated, EtherDiffer found that each implemen-

tation performs validation on a very di�erent set of �elds. In other

words, while some implementations return an error in case of an

invalid �eld, the others just return a normal result: an estimated gas

value or a contract return value. The columns from GL-1 to GL-10

in Table 3 summarize the return values when invalid �eld values

are given. As the results show, none of the implementations share

the same set of �elds to validate. For example, while Geth throws an

error against improper fee in gas estimation, Nethermind throws an

error against low gas limit and invalid transaction type and nonce.

Also, as in invalid argument handling, even a single implementa-

tion does not validate �elds consistently. For example, while Geth

has no validation on gas limit in gas estimation, it throws an error

against low gas limit in local execution. These deviations can be

problematic as DApp developers usually rely on the results and

make actual transactions with the same �eld values.

Finding 3: Ethereum node implementations validate di�erent

parameters in gas estimation and local execution.

4.2.3 Uncle Access. As explained earlier, the RPC speci�cation has

no clari�cation with regard to non-deterministic event handling.

While uncle blocks are indicators of such occurrences, EtherDiffer

found �ve deviation classes in terms of handling them. Particularly,

node implementations returned deviated results when an uncle

hash is passed to �ve methods that expect a block hash argument.

The argument is still semantically-valid as an uncle hash is yet

another block hash. However, as a canonical chain only includes

the headers of once-valid uncle blocks, the return values from

accessing their body elements are up to the node implementations.

The columns from UA-1 to UA-5 in Table 3 show the return values

for each method, and the results show that the implementations

have di�erent levels of support for original uncle block data: partial,

full, or none. While Geth supports most of the methods, it does

not provide access to the transactions existed in uncle blocks. Besu

fully supports uncle block access, and the other two nodes provide

no support by returning either an error or null.

1340

EtherDi�er: Di�erential Testing on RPC Services of Ethereum Nodes ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 5: Test Cases for Crash and Denial-of-Service Bugs

Finding 4: Ethereum node implementations provide di�erent

levels of support for original uncle block data.

4.2.4 Method Support. The RPC speci�cation de�nes a uniform

set of methods that Ethereum nodes should implement. However,

EtherDiffer found that the nodes have not implemented some

of the methods. Particularly, Geth and Besu have no support for a

single method, and Erigon lacks implementations for three methods

that return a pending transaction list or account data. We con�rmed

that the nodes have not clearly noted the non-implementations in

their documentations except for one case. Even more, we found a

casewhere the documentation speci�ed all the required information

to make a valid method call including example code snippets. This

can give false intuitions to DApp developers that their application

code is operating in the expected manner.

Finding 5: Ethereum node implementations do not provide

consistent sets of RPC methods to users.

4.2.5 Fields and Formats. EtherDiffer found two kinds of syn-

tactic deviations: structure �elds and return value formats. While

the implementations de�ne the core blockchain data structures

in their own programming languages, the structures consist of

slightly di�erent sets of �elds. Particularly, we found deviations in

�ve structure de�nitions: event logs, uncle blocks, canonical blocks,

transactions, and receipts. For example, while Geth and Erigon do

not de�ne transactions �eld for uncle blocks, Nethermind and Besu

have the �eld with an empty array value. Also, only Besu does not

include type �eld for transactions. We analyzed the results and

reported those that disconform to the speci�cation. In addition,

while the RPC interface o�ers two methods to access contract stor-

age, node implementations return its keys and values in di�erent

formats such as the length of hexadecimal storage values.

Finding 6: The de�nitions of core data structures are slightly

di�erent in node implementations.

Finding 7: Ethereum node implementations return storage

keys and values in inconsistent formats.

4.2.6 Implementation Bugs. The last category consists of eight

classes of implementation bugs. The total di�culty �eld in block

headers stores the value of accumulatedminingwork until the block.

However, we found a bug in each of three node implementations

that they either produced undefined or 0 in case of an uncle block

header. Also, there was a bug in Nethermind that returned zero for

non-zero storage values and proofs. Besu had three implementation

bugs with regard to the handling of event logs and transaction fee

history. Particularly, Besu returned wrong values for log indices

and identi�ers at all times. Also, it returned arbitrary fee values

additionally when the number of requested blocks exceeded that of

available blocks. There existed two more bugs in Nethermind and

Besu that they produced wrongly estimated gas values for contract

executions. Lastly, we found two critical bugs in Erigon and Besu

that either crashed the node or blocked it from serving users. When

a signi�cantly large value was used as the ending block number

for event log retrievals, a crash occurred in the handler method of

Erigon, and Besu did not serve any subsequent RPC requests until

resolved with a timeout. Figure 5 shows two example test cases

to trigger the bugs. The erigon function tries to acquire all event

logs originated from aa3. However, the block range is wrong as

the aa5 variable holds an invalid block value, and Erigon crashed

with a “method handler crashed” message when executed. Erigon

incorrectly assumed that toBlock is always less than the maximum

32-bit unsigned integer. After we reported this bug, it took less

than a day until the patch, which demonstrates the high severity

of the bug. Similarly, the besu function tries to retrieve all event

logs originated from aa2. However, the aa4 variable holds an invalid

block value, and Besu falls into denial-of-service for a speci�c time

period with a “Thread blocked” message.

Finding 8: Ethereum nodes have various implementation bugs,

which include crash and DoS bugs.

4.2.7 Discussion: Real-World Impacts. After we reported 29 devia-

tion classes, our �ndings received an acknowledgement from the

speci�cation developers. Moreover, the developers even approved

to contribute our test cases to their o�cial repository [26]:

“thank you for these reports, this is very helpful”,

“would be very happy to have you contribute your tests”

Similarly, we reported 15 deviation classes to node developers and

received an acknowledgement of our implementation [25]:

“super interested in this project · · · like to read more”

The developers have either patched or con�rmed 13 of the reported

classes, while they had their own rationale for the rest. One thing

to note is that some uncle-related deviation classes may lose their

value in the main network due to the merge. However, they still

have practical impacts as there exist Ethereum-based PoWnetworks

with 3.63 billion dollars of market capitalizations [34]. Also, while

EtherDiffer can fail at detecting PoS-speci�c deviations such as

handling of block �nality, we leave it as future work.

1341

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

Table 4: Comparison of rpc-compat and EtherDiffer

(a) Chain Generation (b) Test Case Generation

299 Transactions 4,762 71.4% Coverage 100%

0 Event Logs 2,737 5.5% Unique TCs 81.8%

0 Chain Events 1,001 0% Error TCs 28.9%

rpc-compat (left), EtherDiffer (right)

4.3 Comparison with the O�cial Tool

As Ethereum nodes are the entry points for end users and thus

signi�cant, the Ethereum Foundation has developed its own testing

platform called Hive [13] and actively validates the node implemen-

tations with various tools on top of it. Particularly, it o�ers a testing

tool called rpc-compat [14], which generates a chain and validates

the consistency of the implementations with a set of test cases. As

rpc-compat is designed for conformance tests, we closely compare

the tool with EtherDiffer in terms of two technical aspects in this

section: chain generation and test case generation. For fairness, we

con�gured rpc-compat to generate a 300-height chain and 600 test

cases and compared with a single iteration of EtherDiffer.

4.3.1 Chain Generation. We �rst compared the non-determinism

in their generated chains as it is the key characteristic of blockchain

and signi�cant for deviation detection. Particularly, the previous

section 2.1 explained that blockchain is non-deterministic in terms

of block elements and chain events. Therefore, we extracted and

analyzed the transactions and event logs in each of their chains as

they are the main block elements. Also, we counted the number of

chain event occurrences based on the existence of uncle headers.

As Table 4-(a) shows, EtherDiffer signi�cantly outperformed rpc-

compat in all three aspects of chain generation. More surprisingly,

our investigation con�rmed that rpc-compat generates a chain

in a completely deterministic manner that every block except the

pre-de�ned genesis contains a single, exactly-equivalent transac-

tion with no event log. Also, it does not produce non-deterministic

chain events such as temporal forks at all. This leads to a signif-

icant degradation in its e�ectiveness and failures of detecting at

least 13 deviation classes shown in Table 2. On the other hand,

EtherDiffer applies multi-concurrent transactions and generates

a non-deterministic chain where each block contains unpredictable

numbers of transactions and event logs. Also, the block elements

are diverse as they are based on 109 di�erent transactions. Lastly,

the propagation delay in our network successfully triggered a sub-

stantial number of non-deterministic chain events.

4.3.2 Test Case Generation. We then compared the test case gen-

eration of each tool. While both tools successfully generated 600

test cases, we evaluated them in the following three aspects: (1)

the coverage of RPC methods in the speci�cation, (2) the ratio of

unique test cases, and (3) the ratio of test cases that triggered node-

produced errors. The �rst aspect is to ensure that the test cases

cover the complete list of RPC methods except the mining-related

and Geth-speci�c ones, while the latter two are to evaluate the

test case diversity for each method. Table 4-(b) shows the overall

results, and the coverage con�rms that rpc-compat validates only

a subset of RPC methods. This is due to its design shortcomings

such as the lack of certain block elements and non-deterministic

chain events. Furthermore, rpc-compat has signi�cantly low test

case diversity as it generates only one or two “static” test cases for

each method. Our evaluation con�rmed that 94.5% of the generated

test cases were duplicates with no support for error-triggering test

cases. These partial support for RPC methods and low test case

diversity signi�cantly degrade its e�ectiveness and result in failures

of detecting at least 45 deviation classes shown in Table 2. On the

other hand, EtherDiffer validates the complete list of RPC meth-

ods. Also, it dynamically generates test cases, and our evaluation

con�rmed that 81.8% were unique. Lastly, 28.9% of the unique test

cases triggered node-produced errors, which demonstrates that

EtherDiffer su�ciently examines error handlings as well.

4.4 Threats to Validity

The evaluation results showed that EtherDiffer e�ectively gener-

ated test cases and detected a variety of deviation classes. Also, it

signi�cantly outperformed the o�cial node testing tool in terms of

non-deterministic chain and test case generation. However, while

our test case generation relies on the manually-converted speci�ca-

tion, there could be human errors during the process of conversion.

Also, as EtherDiffer does not cover all possible arguments for

RPC method calls, some other deviations can possibly remain undis-

covered. We believe that our conversion was correct as the speci�-

cation is well-structured with speci�c patterns and the descriptions

provide su�cient details to extract and cluster properties. Also,

the success ratios of test case generation con�rmed the validity of

our conversion. Besides, we believe that our �ndings of deviation

classes have already produced high impacts to the community as

acknowledged by both speci�cation and node developers.

5 RELATED WORK

Analysis of Smart Contracts and DApps. As on-chain smart

contracts play a vital role in the core logic of DApps, ensuring their

correctness and security is crucial for the development of reliable

DApps. Prior research e�orts have disclosed various vulnerabilities

in smart contracts [23, 32, 37] and have developed automated tools

for their detection [1, 4, 22, 32, 39, 42, 45]. Additionally, several

measurement studies have been conducted to assess the strengths

and weaknesses of these tools [30, 35, 46]. Moreover, with the

increasing popularity of DApps, researchers have extended their

investigation beyond smart contracts to encompass the entire DApp

ecosystem. For example, Zhang et al. [47] identi�ed synchronization

bugs arising from inconsistencies between on-chain and o�-chain

states, and Li et al. [27] demonstrated a denial-of-service attack

on Ethereum RPC services. Also, Su et al. [31] explored past real-

world attacks on Ethereum DApps. However, despite these valuable

contributions to the correctness and security of smart contracts

and DApps, none of them has investigated the deviations among

di�erent node implementations in terms of their RPC services. Also,

the previous work had impacts on speci�c DApps only, whereas

EtherDiffer contributes to the ecosystem in general as all DApps

depend on the RPC services of Ethereum nodes.

Di�erential Testing. Di�erential testing has proven to be an ef-

fective method for identifying deviations in software and has been

successfully applied in diverse domains, such as JVMs [43, 50, 51],

deep learning systems [24], and x86 disassemblers [41]. Recently, it

1342

EtherDi�er: Di�erential Testing on RPC Services of Ethereum Nodes ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

has also been adopted in the blockchain domain. Fu et al. [48] intro-

duced EVMFuzzer, a tool that mutates real-world smart contracts us-

ing eight prede�ned mutators. By executing the mutated contracts,

EVMFuzzer identi�ed inconsistencies in opcode sequence execution

and gas usage across four EVM implementations. Another frame-

work, NeoDi� [9], focuses on the virtual machine of Neo smart

contracts and directly generates test bytecodes using bytecode-level

mutators. This approach produces valid opcode sequences not at-

tainable by high-level programming language compilers. Similarly,

EVMLab [11] deploys random test bytecodes and invokes them

within a single transaction to evaluate di�erent Ethereum clients.

Yang et al. [49] developed Flu�y, a tool designed to detect consensus

bugs in Ethereum that can lead to errorneous states within the block-

chain. Notably, Flu�y applies multiple transactions and enables the

detection of bugs that cannot be detected with a single transac-

tion. Ma et al. [21] introduced LOKI, which also detects consensus

bugs but uniquely employs a dynamic state model generated from

real-time consensus information. The dynamic information enables

LOKI to detect complex consensus bugs in four di�erent blockchain

platforms including Ethereum that would be bypassed with �xed

types of inputs. Although the frameworks have e�ectively detected

deviations among nodes, none of them is designed to investigate

the RPC services. The closest tool to EtherDiffer is rpc-compat

maintained by the Ethereum Foundation. However, our evaluation

showed that rpc-compat has signi�cantly low e�ectiveness in both

technical aspects.

6 CONCLUSION

In this research, we aimed at �nding any deviations among four

major node implementations in terms of their RPC services. The

deviations can exist as the RPC speci�cation does not clarify the

expected behaviors in case of non-deterministic chain events and in-

valid arguments. To e�ectively detect such deviations, we proposed

two test case generation techniques and implemented EtherDiffer,

an automatic di�erential testing tool. EtherDiffer �rst generates

a non-deterministic chain by multiple-and-concurrent transaction

injection and propagation delay. Then, it applies our techniques to

generate both semantically-valid and invalid-yet-executable test

cases. EtherDiffer executes them on each target node and reports

if any error deviations or value deviations are detected. Our evalu-

ation showed that EtherDiffer generated both valid and invalid

test cases with the success ratios of 98.8% and 95.4%, respectively.

Also, it detected 48 deviation classes, which include 11 implemen-

tation bugs such as crash and denial-of-service bugs. We reported

44 of the detected classes to the speci�cation and node develop-

ers and received acknowledgements as well as bug patches. Lastly,

EtherDiffer signi�cantly outperformed the o�cial node testing

tool in terms of both chain and test case generation. We believe that

our research �ndings can stabilize the ecosystem of decentralized

applications by eliminating the inconsistencies among nodes.

7 DATA AVAILABILITY

To contribute to openness in science, we disclose the replication

package [28] and evaluation datasets [29] to the public. As they are

archived on a preserved digital repository, anyone can download

the package and datasets at any time from the links.

ACKNOWLEDGMENTS

This work was supported by Institute of Information & Commu-

nications Technology Planning & Evaluation (IITP) grant funded

by the Korea government (MSIT) (No.2022-0-00688,AI Platform to

Fully Adapt and Re�ect Privacy-Policy Changes), (No. 2022-0-01199;

Graduate School of Convergence Security, Sungkyunkwan Univer-

sity), and the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIT) (No.2022R1F1A1074495)

REFERENCES
[1] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor and Prateek Saxena.

2019. Exploiting the Laws of Order in Smart Contracts. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
363–373. https://doi.org/10.1145/3293882.3330560

[2] Paul Bouchon. 2022. Remote Procedure Call Speci�cation. Retrieved January
4, 2023 from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#
error-codes

[3] ChainSafe. 2016. Web3.js - Ethereum JavaScript API. Retrieved January 4, 2023
from https://github.com/ChainSafe/web3.js/tree/v1.7.4

[4] Chenguang Zhu, Ye Liu, Xiuheng Wu, and Yi Li. 2022. Identifying Solidity
Smart Contract API Documentation Errors. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1–13. https:
//doi.org/doi.org/10.1145/3551349.3556963

[5] Infura Community. 2019. How Does the Load Balancer Work? Retrieved January
4, 2023 from https://community.infura.io/t/how-does-the-load-balancer-work/
1090

[6] ConsenSys. 2020. Ethereum by the Numbers -May 2020. Retrieved January 23, 2023
from https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/

[7] Cryptoslate. 2023. Coin Rankings. Retrieved January 23, 2023 from https:
//cryptoslate.com/coins/

[8] DappRadar. 2023. Top Ethereum Dapps. Retrieved January 23, 2023 from https:
//dappradar.com/rankings/protocol/ethereum

[9] Dominik Maier, Fabian Fäßler and Jean-Pierre Seifert. 2021. Uncovering Smart
Contract VM Bugs via Di�erential Fuzzing. In Proceedings of the 5th Reversing
and O�ensive-oriented Trends Symposium (ROOT). 11–22. https://doi.org/10.1145/
3503921.3503923

[10] Smart Contract Engineer. 2022. Solidity by Example. Retrieved January 4, 2023
from https://solidity-by-example.org/

[11] Ethereum. 2019. EVM Lab Utilities. Retrieved July 24, 2023 from https://github.
com/ethereum/evmlab

[12] Ethereum. 2022. Ethereum JSON-RPC Speci�cation. Retrieved January 4, 2023
from https://ethereum.org/en/developers/docs/nodes-and-clients/

[13] Ethereum. 2023. Hive - Ethereum End-to-End Test Harness. Retrieved January 4,
2023 from https://github.com/ethereum/hive

[14] Ethereum. 2023. Rpc-Compat Simulator. Retrieved January 10, 2023 from https:
//github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat

[15] Ethereum.org. 2022. JSON-RPC API. Retrieved January 4, 2023 from https:
//ethereum.org/en/developers/docs/apis/json-rpc/

[16] Ethereum.org. 2022. Nodes and Clients. Retrieved January 4, 2023 from https:
//ethereum.org/en/developers/docs/nodes-and-clients/

[17] Ethereum.org. 2022. Proof-of-Stake. Retrieved January 11, 2023 from https:
//ethereum.org/en/developers/docs/consensus-mechanisms/pos/

[18] Ethereum.org. 2022. Proof-of-Work. Retrieved January 11, 2023 from https:
//ethereum.org/en/developers/docs/consensus-mechanisms/pow/

[19] Ethernodes. 2023. Ethereum Mainnet Statistics. Retrieved January 23, 2023 from
https://ethernodes.org

[20] Ethereum Stack Exchange. 2016. What Happens When a Transaction Nonce is
Too High? Retrieved January 4, 2023 from https://ethereum.stackexchange.com/
questions/2808/what-happens-when-a-transaction-nonce-is-too-high

[21] Fuchen Ma, Yuanliang Chen, Meng Ren, Yuanhang Zhou, Yu Jiang, Ting Chen,
Huizhong Li and Jiaguang Sun. 2023. LOKI: State-Aware Fuzzing Framework
for the Implementation of Blockchain Consensus Protocols. In Proceedings of
the 30th Annual Network and Distributed System Security Symposium (NDSS).
https://doi.org/10.14722/ndss.2023.24078

[22] Haijun Wang, Yi Li, Shang-Wei Lin, Lei Ma, and Yang Liu. 2019. VULTRON:
Catching Vulnerable Smart Contracts Once and for All. In Proceedings of the 41st
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). 1–4. https://doi.org/doi.org/10.1109/ICSE-NIER.2019.00009

[23] Sungjae Hwang and Sukyoung Ryu. 2020. Gap between Theory and Practice:
An Empirical Study of Security Patches in Solidity. In Proceedings of the 42nd
ACM/IEEE International Conference on Software Engineering (ICSE). 542–553.
https://doi.org/10.1145/3377811.3380424

[24] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz:
Di�erential Fuzzing Testing of Deep Learning Systems. In Proceedings of the 26th

1343

https://doi.org/10.1145/3293882.3330560
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#error-codes
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#error-codes
https://github.com/ChainSafe/web3.js/tree/v1.7.4
https://doi.org/doi.org/10.1145/3551349.3556963
https://doi.org/doi.org/10.1145/3551349.3556963
https://community.infura.io/t/how-does-the-load-balancer-work/1090
https://community.infura.io/t/how-does-the-load-balancer-work/1090
https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/
https://cryptoslate.com/coins/
https://cryptoslate.com/coins/
https://dappradar.com/rankings/protocol/ethereum
https://dappradar.com/rankings/protocol/ethereum
https://doi.org/10.1145/3503921.3503923
https://doi.org/10.1145/3503921.3503923
https://solidity-by-example.org/
https://github.com/ethereum/evmlab
https://github.com/ethereum/evmlab
https://ethereum.org/en/developers/docs/nodes-and-clients/
https:// github.com/ethereum/hive
https://github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat
https://github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethernodes.org
https://ethereum.stackexchange.com/questions/2808/what-happens-when-a-transaction-nonce-is-too-high
https://ethereum.stackexchange.com/questions/2808/what-happens-when-a-transaction-nonce-is-too-high
https://doi.org/10.14722/ndss.2023.24078
https://doi.org/doi.org/10.1109/ICSE-NIER.2019.00009
https://doi.org/10.1145/3377811.3380424

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Shinhae Kim and Sungjae Hwang

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 739–743. https://doi.org/
10.1145/3236024.3264835

[25] JosephK95. 2022. Erigon RPC Service Consistency against Other Client Implemen-
tations #1. Retrieved July 24, 2023 from https://github.com/ledgerwatch/erigon/
issues/4962

[26] JosephK95. 2022. Proposal: Error Handling Speci�cation #1. Retrieved July 24,
2023 from https://github.com/ethereum/execution-apis/issues/286

[27] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Tang, XiaoFeng Wang, and Xiapu Luo.
2021. As Strong As Its Weakest Link: How to Break Blockchain DApps at RPC
Service. In Proceedings of the 28th Annual Network and Distributed System Security
Symposium (NDSS). 616–633. https://doi.org/10.14722/ndss.2021.23108

[28] Shinhae Kim and Sungjae Hwang. 2023. EtherDi�er: Di�erential Testing on
RPC Services of Ethereum Nodes (Code). Retrieved August 10, 2023 from https:
//doi.org/10.6084/m9.�gshare.23913096.v1

[29] Shinhae Kim and Sungjae Hwang. 2023. EtherDi�er: Di�erential Testing on
RPC Services of Ethereum Nodes (Data). Retrieved August 9, 2023 from https:
//doi.org/10.6084/m9.�gshare.21936555.v1

[30] Shinhae Kim and Sukyoung Ryu. 2020. Analysis of Blockchain Smart Contracts:
Techniques and Insights. In Proceedings of the 5th IEEE Secure Development Con-
ference (SecDev). 65–73. https://doi.org/10.1109/SecDev45635.2020.00026

[31] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFengWang, Luyi Xing and
Baoxu Liu. 2021. Evil Under the Sun: Understanding and Discovering Attacks on
Ethereum Decentralized Applications. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security). 1307–1324.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security (CCS). 254–269. https:
//doi.org/10.1145/2976749.2978309

[33] Bernard Marr. 2022. The Top 10 Tech Trends In 2023 Everyone Must Be Ready
For. Retrieved January 11, 2023 from https://www.forbes.com/sites/bernardmarr/
2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for

[34] MiningPoolStats. 2023. Mining Pool Stats. Retrieved January 23, 2023 from
https://miningpoolstats.stream/

[35] Monika Angelo and Gernot Salzer. 2019. A Survey of Tools for Analyzing
Ethereum Smart Contracts. In Proceedings of the 1st IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON). 69–78. https:
//doi.org/10.1109/DAPPCON.2019.00018

[36] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Decen-
tralized Business Review (2008).

[37] Nicola Atzei, Massimo Bartoletti and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts. In Proceedings of the 6th International Conference
on Principles of Security and Trust (POST). 164–186. https://doi.org/10.1007/978-
3-662-54455-6_8

[38] Fellowship of Ethereum Magicians. 2018. Remote Procedure Call Speci�ca-
tion. Retrieved January 4, 2023 from https://ethereum-magicians.org/t/remote-
procedure-call-speci�cation/1537

[39] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 25th ACM SIGSAC Conference on Computer and

Communications Security (CCS). 67–82. https://doi.org/10.1145/3243734.3243780
[40] Evgeny Ponomarev. 2019. DApp Survey Results 2019. Retrieved January

4, 2023 from https://medium.com/�uence-network/dapp-survey-results-2019-
a04373db6452

[41] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. N-version Disassembly: Di�erential Testing of x86 Disassemblers. In
Proceedings of the 19th International Symposium on Software Testing and Analysis
(ISSTA). 265–274. https://doi.org/10.1145/1831708.1831741

[42] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting Nondetermin-
istic Payment Bugs in Ethereum Smart Contracts. In Proceedings of the 34th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA). 1–29. https://doi.org/10.1145/3360615

[43] Sungjae Hwang, Sungho Lee, Jihoon Kim and Sukyoung Ryu. 2021. JUSTGen:
E�ective Test Generation for Unspeci�ed JNI Behaviors on JVMs. In Proceedings
of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE).
1708–1718. https://doi.org/10.1109/ICSE-Companion52605.2021.00073

[44] Solidity Team. 2022. Solidity. Retrieved January 4, 2023 from https://soliditylang.
org/

[45] Teng Zhou, Kui Liu, Li Li, Zhe Liu, Jacques Klein and Tegawendé F Bissyandé. 2021.
SmartGift: Learning to Generate Practical Inputs for Testing Smart Contracts. In
Proceedings of the 37th IEEE International Conference on Software Maintenance
(ICSM). 23–34. https://doi.org/10.1109/ICSME52107.2021.00009

[46] Thomas Durieux, João F. Ferreira, Rui Abreu and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In Pro-
ceedings of the 42nd ACM/IEEE International Conference on Software Engineering
(ICSE). 530–541. https://doi.org/10.1145/3377811.3380364

[47] Wuqi Zhang, Lili Wei, Shuqing Li, Yepang Liu, and Shing-Chi Cheung. 2021.
ÐArcher: Detecting On-Chain-O�-Chain Synchronization Bugs in Decentralized
Applications. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 553–565. https://doi.org/10.1145/3468264.3468546

[48] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang, Huizhong Li,
and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing.
In Proceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
1110–1114. https://doi.org/10.1145/3338906.3341175

[49] Youngseok Yang, Taesoo Kim and Byung-Gon Chun. 2021. Finding Consensus
Bugs in Ethereum via Multi-Transaction Di�erential Fuzzing. In Proceedings of
the 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 349–365.

[50] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Di�erential Testing of JVM
Implementations. In Proceedings of the 41st IEEE/ACM International Conference on
Software Engineering (ICSE). 1257–1268. https://doi.org/10.1109/ICSE.2019.00127

[51] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Di�erential Testing of JVM Implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 85–99. https://doi.org/10.1145/2908080.2908095

Received 2023-02-02; accepted 2023-07-27

1344

https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://github.com/ledgerwatch/erigon/issues/4962
https://github.com/ledgerwatch/erigon/issues/4962
https://github.com/ethereum/execution-apis/issues/286
https://doi.org/10.14722/ndss.2021.23108
https://doi.org/10.6084/m9.figshare.23913096.v1
https://doi.org/10.6084/m9.figshare.23913096.v1
https://doi.org/10.6084/m9.figshare.21936555.v1
https://doi.org/10.6084/m9.figshare.21936555.v1
https://doi.org/10.1109/SecDev45635.2020.00026
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for
https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for
https://miningpoolstats.stream/
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://ethereum-magicians.org/t/remote-procedure-call-specification/1537
https://ethereum-magicians.org/t/remote-procedure-call-specification/1537
https://doi.org/10.1145/3243734.3243780
https://medium.com/ fluence-network/dapp-survey-results-2019-a04373db6452
https://medium.com/ fluence-network/dapp-survey-results-2019-a04373db6452
https://doi.org/10.1145/1831708.1831741
https://doi.org/10.1145/3360615
https://doi.org/10.1109/ICSE-Companion52605.2021.00073
https://soliditylang.org/
https://soliditylang.org/
https://doi.org/10.1109/ICSME52107.2021.00009
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3468264.3468546
https://doi.org/10.1145/3338906.3341175
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2908080.2908095

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain Non-determinism
	2.2 Ethereum DApps and JavaScript Libraries

	3 Methodology
	3.1 Overview
	3.2 Non-deterministic Chain Generation
	3.3 Domain-Specific Language
	3.4 Property-Based Template Code Generation
	3.5 Type-Preserving Mutation

	4 Evaluation
	4.1 Effectiveness of Test Case Generation
	4.2 Deviation and Bug Detection Capability
	4.3 Comparison with the Official Tool
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

