t.)

Check for
Updates

EtherDiffer: Differential Testing on RPC Services of
Ethereum Nodes

Shinhae Kim
The Affiliated Institute of ETRI
Daejeon, South Korea
shinhae1106@nsr.re.kr

ABSTRACT

Blockchain is a distributed ledger that records transactions among
users on top of a peer-to-peer network. Among all, Ethereum is the
most popular general-purpose platform and its support of smart
contracts led to a new form of applications called decentralized
applications (DApps). A typical DApp has an off-chain frontend
and on-chain backend architecture, and the frontend often needs
interactions with the backend network, e.g., to acquire chain data
or make transactions. Therefore, Ethereum nodes implement the
official RPC specification and expose a uniform set of RPC methods
to the frontend. However, the specification is not sufficient in two
points: (1) lack of clarification for non-deterministic event handling,
and (2) lack of specification for invalid arguments. To effectively
disclose any deviations caused by the insufficiency, this paper in-
troduces ETHERDIFFER that automatically performs differential
testing on four major node implementations in terms of their RPC
services. ETHERDIFFER first generates a non-deterministic chain
by multi-concurrent transactions and propagation delay. Then, it
applies our key techniques called property-based generation and
type-preserving mutation to generate both semantically-valid and
semantically-invalid-yet-executable test cases. ETHERDIFFER exe-
cutes the test cases on target nodes and reports any deviations in
error handling or return values. The evaluation showed the effec-
tiveness of our test case generation techniques with the success
ratios of 98.8% and 95.4%, respectively. Also, ETHERDIFFER detected
48 different classes of deviations including 11 implementation bugs
such as crash and denial-of-service bugs. We reported 44 of the de-
tected classes to the specification and node developers and received
acknowledgements as well as bug patches. Lastly, it significantly
outperformed the official node testing tool in every technical aspect.
We believe that our research findings can contribute to more stable
DApp ecosystem by reducing the inconsistencies among nodes.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - Theory of computation — Program analysis; « Se-
curity and privacy — Distributed systems security.

“Sungjae Hwang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 39, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12...$15.00
https://doi.org/10.1145/3611643.3616251

1333

Sungjae Hwang’
Sungkyunkwan University
Suwon, South Korea
sungjaeh@skku.edu

KEYWORDS

blockchain, ethereum nodes, rpc services, differential testing

ACM Reference Format:

Shinhae Kim and Sungjae Hwang. 2023. EtherDiffer: Differential Testing on
RPC Services of Ethereum Nodes. In Proceedings of the 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE °23), December 3-9, 2023, San Francisco, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3611643.
3616251

1 INTRODUCTION

Ablockchain is a distributed ledger on top of a peer-to-peer network
and records transactions among users. It is technically a growing list
of data structures called blocks, and each peer shares the same copy
of the list to prevent any arbitrary modifications. A block contains
various transactional and network state data such as transactions,
event logs, and account states. When a user submits a transaction,
one of the peers forms a block with the transaction and broadcasts
it to the network. Once received, each peer individually validates
the incoming block and appends it at the end of its chain. Since in-
troduced by Satoshi Nakamoto in 2009 [36], blockchain technology
has made much progress and became a top future trend [33].

Out of all, Ethereum is the most popular general-purpose block-
chain platform with 199 billion dollars of market capitalization [7].
It consists of Ethereum peers referred to as “nodes” and supports
general-purpose smart contracts. The contracts are programs that
are implemented in high-level programming languages like So-
lidity [44] and deployed on the network. Users can execute their
functions by submitting transactions with contract addresses and
arguments specified. As smart contracts enable the automation of
service logic, there has been a popularity increase in decentralized
applications (DApps). According to statistics [6], there exist 2,855
Ethereum DApps spanning over various services like payments and
auctions, and 31,590 users made a total of 79,550 transactions in a
single day. Also, the top 10 DApps have the transaction volume of
approximately 6.88 billion dollars in total [8].

A decentralized application consists of an off-chain frontend
and an on-chain backend. The frontend is what users interact with,
and the backend is a number of smart contracts to handle core ap-
plication logic. However, the off-chain component needs frequent
interactions with its backend network for e.g., acquiring chain
states or making new transactions. Therefore, Ethereum nodes of-
fer remote procedure call (RPC) services [15] and expose a set of
RPC methods that the frontend can rely on. Meanwhile, there are
a number of different implementations of Ethereum nodes in dif-
ferent programming languages. According to the official Ethereum

page [16]:

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616251
https://doi.org/10.1145/3611643.3616251
https://doi.org/10.1145/3611643.3616251
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616251&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

“This makes the network stronger and more diverse.
The ideal goal is to achieve diversity without any client
dominating to reduce any single points of failure”

To enable uniform RPC services among nodes, the Ethereum
Foundation defines an official specification [12] that their RPC
method implementations should comply to. The specification has a
brief description of each method and defines regular expressions
for valid arguments and return values. However, the specification is
not sufficient in two points. First, it has no clarification on expected
behaviors in case of non-deterministic chain events. For example,
while there was a question in Ethereum Magicians forum [38]:

“What’s the expected behavior of eth_getLogs if the block-
Hash does not correspond to any block? This is not just
a theoretical consideration, since chain reorganizations
might cause a blockHash to no longer be valid”,

the questioner confirmed that some implementations return -32000
error code with an “unknown block” message, while others sim-
ply return an empty array. Second, the specification does not state
anything on return values in case of invalid arguments such as
values out of the allowed ranges. While there was an attempt to
standardize error codes among nodes [2], the proposal has been
stagnant for more than three years. It can be problematic if nodes
behave differently as at least 63% of DApps rely on third-party node
providers [40] that maintain a pool of various types of nodes and
seamlessly serve with a different one based on black-box load bal-
ancers [27]. For example, a bug report in Infura, the most dominant
node provider, showcases that a user unconsciously experienced
inconsistent results when they queried the latest block number [5].

To effectively investigate any deviations in terms of RPC services,
this paper presents the first syntax- and semantics-aware differential
testing approach. Also, we implemented ETHERDIFFER that applies
our approach to four different node implementations that together
take up approximately 99.7% of the main Ethereum network [19].
To facilitate better understanding, we define a few terms as follows:

Definition 1 (Non-deterministic Chain). If a generation mechanism
produces a different chain every time, the state of which is unpre-
dictable, the resulting chain is called non-deterministic.

Definition 2 (Semantically-Validness). A test case is semantically-
valid if all method call arguments match the expected semantics.

Definition 3 (Semantically-Invalidness). A test case is semantically-
invalid if any argument disconforms to the expected semantics.

Particularly, this research overcomes three technical challenges:
1) the generation of semantically-valid test cases, 2) the genera-
tion of semantically-invalid-yet-executable test cases, and 3) the
enforcement of chain state consistency among nodes prior to test
case executions. ETHERDIFFER first constructs a local network that
consists of four nodes, each from a different implementation, as
well as auxiliary nodes for chain evolution. Then, it generates a
non-deterministic chain by making multiple-and-concurrent trans-
actions that actively produce event logs and state changes. Also, we
made minimum instrumentation on the nodes to mimic real-world
propagation delay and trigger non-deterministic chain events.

On top of the generated chain, ETHERDIFFER overcomes the first
two challenges by our key techniques: property-based generation

1334

Shinhae Kim and Sungjae Hwang

and type-preserving mutation. We first defined a domain-specific
language (DSL) that captures the type and semantic requirement,
which we call “property,” for each method argument. Then, we con-
verted the specification of RPC-triggering methods into our DSL,
which we denote as specps, . Based on specys , ETHERDIFFER gener-
ates semantically-valid template code where all arguments satisfy
their properties. The template code is yet another valid test case
but not bound to a specific RPC-serving node. Also, ETHERDIFFER
stochastically mutates one of the arguments to turn the template
code semantically-invalid, while preserving the executability. Then,
it produces a set of four test cases by binding the template code with
each target node and cross-checks their execution return values.

The last challenge is to enforce the chain state consistency among
nodes when executing test cases as its inconsistency can lead to false
alarms. ETHERDIFFER implements a two-phase architecture: gener-
ation and testing phase. During the generation phase, the auxiliary
nodes operate to evolve the chain. Then, once the chain reaches
the configured height, their operations stop and ETHERDIFFER be-
gins its testing phase after all target nodes are synced. Also, we
implemented a save-and-restore strategy as a transaction-sending
test case changes the original chain state. The evaluation showed
that our techniques generated both semantically-valid and invalid-
yet-executable test cases with the success ratios of 98.8% and 95.4%,
respectively. Also, ETHERDIFFER detected 48 deviation classes in-
cluding 11 implementation bugs such as crash and denial-of-service
bugs. We reported 44 of the detected classes and received acknowl-
edgements for our research findings as well as bug patches. Lastly,
ETHERDIFFER significantly outperformed the official testing tool
for Ethereum nodes in every technical aspect.

In short, the contributions of this paper are the followings:

e We present an approach that generates semantically-
valid test cases based on a specification. Also, we pre-
sent a mutation strategy to produce invalid test cases
while preserving the executability. Our approaches can
be applied in other domains as well if specifications exist.

We present ETHERDIFFER that automatically reports de-
viations among four Ethereum node implementations
that take up 99.7% of the mainnet. ETHERDIFFER found
438 classes of deviations, which include 11 implementation
bugs. We believe it can contribute to the stability of DApp
ecosystem and publicly opened the tool implementation.!

2 BACKGROUND

In this section, we explore the concepts highly related to our re-
search. We first explain the two factors that make blockchain non-
deterministic. Then, we present the architecture of typical DApps
as well as the necessity of using JavaScript libraries in development.

2.1 Blockchain Non-determinism

Blockchain is technically a growing list of blocks, and specifically-
configured nodes called miners create them. However, as blockchain
operates on a large user base, multiple transactions concurrently
reside on the network, and it is upon the miner’s decision which
and how many transactions to include in a block. Therefore, it is

![Link for ETHERDIFFER] https://github.com/JosephK95/EtherDiffer-public

EtherDiffer: Differential Testing on RPC Services of Ethereum Nodes

GENERATION PHASE

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

TESTING PHASE

:M‘.‘.!?.'.'.g.‘?.'.'!.‘?.'-.‘.'f!'.‘?.r.‘.t..I!'.?.'.‘..s.ﬁf?.t.'..o.[‘ﬁ.: _Type-Preserving Mutation
H Sender Sender Sender)} 1 =] . Selected H > Geth
o Method - {§}7
: : : Specification : ic:)}{’?} <4 E
i i i H in DSL v e p >
B Bn Bn || ety o rigon
; i ; Mutator i p
O uuuuuuuuuuuu :
< @ Mutated Template
@ e {03 Code VW: Code Nethermind :
Property- Template Test =
Generators Generator Code Test Case Cases
: T R Convertar [7
© © |'__ Vi Besu
Block @Block @Block L: Geth =
Mabping Table Value L | PO Retun .
(Miner (Miner (Miner i pping Checker Checker Values
. , Property- Based Generation EAVaIue Deviations EAError Deviations
v v

Figure 1: Overall Architecture of ETHERDIFFER

// WEB3: A Web3 instance bound to a RPC-serving node
// ERC20: A Contract instance bound to the ERC2@ contract
async function mint() {
try {
let _a
let _n
return

(await WEB3.eth.getAccounts())[0];

await WEB3.eth.getTransactionCount(_a,
await ERC20.methods.mint (10).send({from:
nonce:

"latest");

_a,
-n, ...

catch (error) {

return error.message;

| Ethereum JavaScript Libraries |

Responses "‘ ‘E/RPC Method Calls

Frontend
Backend

Block

1 contract ERC20 is IERC20 {
2 uint public totalSupply;
SIX 3 mapping (address => uint) public balanceOf;
A 5 function mint (uint amount) external {
6 balanceOf[msg.sender] += amount;
7 totalSupply += amount;
8 emit Transfer (address (@), msg.sender, amount);
9 }
10 3}

Figure 2: Architecture of ERC20 Decentralized Application

completely non-deterministic which transactions a new block will
consist of. Also, the inclusion of different transactions leads to differ-
ent elements in other block fields as well. For example, blocks con-
tain event logs emitted from smart contract executions. Therefore,
only the logs from chosen contract transactions become part of the
blocks. Another key factor that makes blockchain non-deterministic
is propagation delay. Ethereum has become a significantly large
network with 5,649 nodes [19]. While each node propagates the
new block to its peers once received, a time difference in block
reception is inevitable. Therefore, the chain can have two blocks
with the same parent when a different miner created another block
before perceiving the existence of a new block. Such event is called
“temporal fork,” and the chain evolves with either one of the blocks,

1335

leading to “chain reorganization.” The left-over blocks drop off the
canonical chain and become orphaned. However, their headers can
be still part of the canonical chain as “uncles” if subsequent miners
include them in their blocks under creation.

The Merge. Since the initial launch in 2015, Ethereum has adopted
proof-of-work (PoW) consensus mechanism [18] where miners for-
mulate blocks by solving cryptographic puzzles. Recently, Ethereum
switched to proof-of-stake (PoS) consensus mechanism [17] where
block proposers and validators participate in block formulation
by staking their Ether balances. However, the non-deterministic
factors remain exactly the same except that uncles no longer exist.

2.2 Ethereum DApps and JavaScript Libraries

A decentralized application consists of an user-interfacing frontend
and backend smart contracts. About 75% of DApps have web-based
frontends implemented in JavaScript [40], and the frontends need
frequent interactions with the backend network. However, as they
are off-chain, Ethereum nodes serve as a bridge to the network
by exposing a set of RPC methods. For example, the user inter-
face of a crowdfunding DApp can display the pledge history by
making an eth_getLogs method call. Also, the frontend can update
the chain state by calling eth_sendTransaction method upon a new
user pledge. However, interacting directly with nodes is not practi-
cal for two reasons. First, it is cumbersome to make syntactically-
valid method calls as a lot of methods have error-prone parameters
such as 20 bytes-encoding hexadecimal addresses or an array of
32 bytes-encoding hexadecimal strings. Also, more importantly,
nodes have no support of event notifications. As blockchain has
non-deterministic characteristics, it is unpredictable when a new
transaction will be mined and confirmed. Users would have to make
numerous repetitions of method calls to track their transactions.
Therefore, DApps leverage Ethereum JavaScript libraries that are
simple wrappers of RPC methods but support input formatters to
filter out miss-typed arguments and callback-based event notifica-
tions. Figure 2 shows an example ERC20 decentralized application.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

The frontend first acquires two types of information by getAccounts
and getTransactionCount library methods at line 5 and 6: an address
which it has ownership of and the number of transactions made by
the address called nonce. Then, it sends a minting transaction to its
backend ERC20 smart contract by send method, which resolves with
the transaction receipt once mined successfully. The nonce should
be incremented by one after each transaction, and invalid nonce
values can lead to various unexpected results including transaction
rejection or long-term pending [20]. However, as mentioned ear-
lier, users can unconsciously experience RPC service from different
nodes. Therefore, it can be crucial if any node returns a deviated
nonce value for the getTransactionCount method call.

3 METHODOLOGY

To effectively investigate the deviations of RPC service, we im-
plemented ETHERDIFFER that automatically performs differential
testing on four Ethereum node implementations. In this section, we
first explain the overall architecture of ETHERDIFFER and how it
generates non-deterministic chains. Then, we present our domain-
specific language as well as two key techniques to generate test
cases based on the specification converted into our DSL.

3.1 Overview

ETHERDIFFER first constructs a local network that consists of four
nodes, each from a different implementation, as well as mining
nodes for chain evolution. The network is configured to activate
all mainnet features except the only difference that it adopts PoW
mechanism for block creation. However, the difference has no im-
pact on outcomes as the testing proceeds only after a consensus is
reached. Figure 1 shows the overall architecture upon the network
construction. ETHERDIFFER begins the generation phase where the
network generates a non-deterministic chain (sec. 3.2). Once the
chain reaches the configured height, ETHERDIFFER switches over
to the testing phase where it generates test cases and cross-checks
their execution results. For the test case generation, ETHERDIFFER
leverages web3.js, the official Ethereum JavaScript library [3]. Par-
ticularly, we defined a domain-specific language that captures the
syntactic and semantic requirements for method arguments (sec.
3.3) and converted the library specification into our DSL, which
we denote as specps.. ETHERDIFFER first selects a method from
specps., and Generator produces semantically-valid template code
where all arguments satisfy their requirements (sec. 3.4). In ad-
dition, Mutator stochastically changes one of the arguments to a
semantically-invalid value while preserving its type (sec. 3.5). Lastly,
Test Case Converter instantiates a set of four test cases by binding
the template code with each target node. Once the executions are
completed, Error Checker reports if only a subset of nodes throw
errors while the others return values, and Value Checker reports if
their return values are not consistent to one another. The test cases
are wrapped with try-catch statements to property identify errors
while preserving the executions of ETHERDIFFER.

3.2 Non-deterministic Chain Generation

As explained in section 2.1, the two factors that make blockchain
non-deterministic are multiple-and-concurrent transactions and

1336

Shinhae Kim and Sungjae Hwang

s = typedef ¢ T<T propdef p d

t o=ty | {[opt] ki t} | t Array(t) | tUt

p = ps | pa | {lopt]” k: p} | p_Array(p) | pUp
d =t M([opt]” tup [Vtupl) | t cM(tup)

¢ = C.Fcyu,>(0a)

Figure 3: Syntax of our Domain-Specific Language

propagation delay. Likewise, ETHERDIFFER applies the factors to
its local network and generates a non-deterministic chain.

Multiple-and-Concurrent Transactions. ETHERDIFFER deploys ap-
plications, each of which consists of one or two smart contracts
that together provide a service. We leveraged the applications from
Solidity by Example [10], a well-known database that covers a wide
range of real-world applications. We filtered those out that only
contain simple logic such as proxies and leveraged the remaining
12 applications. Upon their deployments, ETHERDIFFER operates
auxiliary nodes that repeatedly and concurrently send transactions
to the contracts. Particularly, each node is dedicated to a single
application to maximize the number of available transactions at a
time. Also, we defined transaction sequences for each application
that guarantee the execution completion while actively triggering
log emissions and state changes. In total, ETHERDIFFER generates a
chain based on 33 sequences consisted of 109 valid transactions.

Propagation Delay. To further induce non-determinism in our
chain, e.g., presence of temporal forks, there should be time delay
in block propagations among nodes. In other words, mining nodes
should create another block before perceiving the existence of a
new block. To trigger such occasions, we instrumented the mining
nodes to delay their block propagations within the period of a block
creation time multiplied by six. This reflects the policy that mining
nodes can include uncle headers that are up to six-generations apart
from their blocks under creation.

3.3 Domain-Specific Language

For test case generation, ETHERDIFFER leverages the official Ether-
eum JavaScript library, web3.js. To automate the processing of the
library specification, we defined a domain-specific language that
captures the types and semantic requirements for method argu-
ments. Figure 3 shows the syntax of our DSL. The specification s
consists of type definitions, subtype relations, property definitions,
and method declarations. A type t can be one of the primitive types
tp, an object type {[opt]? k: t}, an array type, or a union of two
types. The primitive types not only include basic JavaScript types
like t_Number and t_String, but also more constrained types like
t_Address and t_Hex32. An object type {[opt]’ k: t} is a collection
of key-type pairs, some of which can be optional. Also, the DSL
captures subtype relations between types (f <: t). A property p is a
semantic requirement that an argument should satisfy. A primitive
property is either a “static” property ps or a “dynamic” property py,
depending on whether its value generation relies on other method
calls. For example, the properties p_Gas and p_Value are static as

EtherDiffer: Differential Testing on RPC Services of Ethereum Nodes ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

t_TxObj getTransactionFromBlock(((t_Number U t_String) n p_BlockNumber) Vv (t_Hex32 i p_BlockHash), (c) Mapping Table (p_Txldx--)
t_Number n p_TxIdx@(p_BlockNumber U p_BlockHash))

t_FeeObj getFeeHistory(t_Number u p_Range(1,1024),
(t_Number U t_String) n p_BlockNumber, A@”Te”tsil @, fa's?]) .
t_Array(t_Number) i p_Array(p_Range(@,100)) (a) Specification in DSL Postfixes: [" transactions.index()’]

Method Name: getBlock

(b) Semantically-Valid Template Code (d) Semantically-Invalid Mutated Code

let aa@ = "latest"; let aa@ = "latest";

let aal = 1; // getBlock(aa@, false).transactions.index() let aa2 = 757; // mutation code for an invalid index
return getTransactionFromBlock(aa@, aal); return getTransactionFromBlock(aa®@, aa2);

Figure 4: Example Code Generation Based on Specification in DSL

users can designate values as they want when sending transactions. Algorithm 1: Template Code Generation
On the other hand, a dynamic property p_Nonce@(p_EOA) needs the Input : Selected method in DSL (d)
return value of getTransactionCount method call with its associated Output : Generated template code (stmts)
address as first argument. An object property {[opt]? k: p} defines 1 function GenTC(d)

the requirement for an object type argument, where each key k 2 stmts « [1, args « []

should satisfy the property p if exists. To systematically derive prop- 3 for p in d.props() do

erty definitions, we first extracted all existing parameters and clus- 4 p < InstProp(p)

tered those that accept the same type of arguments based on their 5 stmts, arg « GenArg(stmts, p)
descriptions. Also, in case of any ambiguity, we referred to the offi- 6 args.push(arg)

cial Ethereum page for further clarification. A method declaration . stmts < GenCall(stmts, d, args)
d either declares a standard method (t M([opt]? t 1 p [V tu p]?)) 8 return stmts

or a contract-interaction method (¢ ¢.M(¢ 1 p)). A standard method
is a simple wrapper of a node-exposing RPC method with one-to-
one correspondence. A contract-interaction method is yet another
wrapper but facilitates RPC method calls to interact with smart con-
tracts. A declaration specifies the type and property (¢ 11 p) of each
parameter as well as its return type. Particularly, standard methods
have zero or more parameters, each of which can be optional, while
contract-interaction methods have a single parameter. Also, the
parameters in standard methods can be disjunctive to allow differ-
ent types of arguments. Figure 4-(a) shows the declarations of two
methods, which we will refer to throughout this section. The up-
per method has two parameters of a block and a transaction index

Algorithm 2: Type-Preserving Mutation

Input : Template code (stmts)
Output : Mutated template code (stmts’)
1 function MutateTC(stmts)
2 call « stmts.pop()
3 arg < SelectArg(call)
4 p < PropLookUp(arg)
5 stmts, arg’ < GenArg(stmts, p)
6 stmts’ « AppendNewCall(stmts, call, arg, arg’)

7 return stmts’

and returns the corresponding transaction in the block. The lower

method retrieves a history of transaction fees in the maximum

1024 blocks backwards from the second parameter block. For every

block, it sorts the fee values in ascending order and returns the property if necessary (Line 4). Then, it generates a valid argument
percentiles specified by the third parameter. A contract transaction by applying different approaches depending on property types
¢ is a prefix for contract-interaction methods and corresponds to (Line 5). Lastly, Generator produces a target method call with the
calling the member function F in contract C with arguments v,. generated arguments (Line 7).

The subscripted values v and v, represent transaction-level argu-
ments, msg. sender and msg. value, respectively. In total, we defined
32 types, 6 subtype relations, 31 properties, and 31 method declara-
tions. Also, as the testing proceeds in the same local network, we
leveraged the 109 transactions from the generation phase as well.

Property Instantiation. There exist several properties that should
be associated with specific accounts and others. For example, when
sending transactions, nonce parameter should receive the transac-
tion count of the sender account. Therefore, once a sender address
is generated, Generator instantiates the nonce property with the
address. Another example is the transaction index parameter of
3.4 Property-Based Template Code Generation getTransactionFromBlock in Figure 4-(a). As it is associated with
the first parameter block, Generator instantiates the index property

ETHERDIFFER selects a target method from specys, , and Generator upon the generation of a block argument.

generates semantically-valid template code based on the GenTC

function in Algorithm 1. The template code is valid JavaScript code Static Property. A primitive property, which captures the seman-
but not bound to any RPC-serving node yet. For each property tics of a primitive type parameter, is “static” if its value genera-
of the selected method (Line 3), Generator first “instantiates” the tion is possible without method calls. Static properties in most

1337

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Shinhae Kim and Sungjae Hwang

Table 1: Success Ratios of Valid and Invalid Test Case Executions

Test Generated Properties Total Test Mutated Types Total
ota ota
Cases | Static Dynamic Object Array Union Cases | Primitive Object Array Union
2,965 1,431 1,275 965 279 150 4,110 & 2,863 1,435 819 - 609 2,863
(98.8%) | (98.8%) (98.8%) (97.6%) (99.6%) (99.3%) (98.6%) (95.4%) | (99.4%) (86.8%) (0%) (99.3%) (95.4%)
= 35 17 15 24 1 1 58 = 137 8 125 - 4 137
(1.2%) | (1.2%) (1.2%) (24%) (04%) (0.7%) (1.4%) (4.6%) (0.6%) (132%) (0%) (0.7%) (4.6%)
3,000 (1,448 1,290 989 280 151 4,168 3,000 (1,443 944 - 613 3,000
(a) Valid Test Cases (Error ? No: v, Yes: [l (b) Invalid Test Cases (Lib. Error ? No: v, Yes: [#)

cases capture the user-assigning transaction parameters but also
other parameters whose values can be statically generated based
on their descriptions, e.g., a random integer in the specified range
for p_Range(1,1024). We defined a Property-Generator for each static
property, which Generator leverages in case of a static property
parameter. For non-trivial cases like user-assigning values, we de-
signed the Property-Generator to return one of the values used in the
specification code snippets as arbitrary value generation can lead to
execution failures like out-of-gas errors. Figure 4-(b) shows an exam-
ple of semantically-valid template code in a simplified format. Gener-
ator produced “latest” for the first parameter as Property-Generator
of p_BlockNumber can return one of the pre-defined strings.

Dynamic Property. A primitive property is “dynamic” if its value
generation relies on method calls. Dynamic properties capture the
parameters that receive chain-stored values such as transaction and
block hashes. Therefore, it is necessary to make method calls at
runtime to acquire a valid property value. Also, it is often that meth-
ods should be called with certain arguments and/or postprocess
their return values. Therefore, we made a Mapping Table for each
dynamic property where each entry contains a method name, fixed
arguments if necessary, and postfixes that return a valid property
value when appended to the return value. Generator selects one of
the entries and chains with the method call result to generate a
dynamic property argument. In Figure 4-(b), the index property
was first instantiated to p_TxIdx@“latest” upon the generation of
aa@. Then, Generator looked up the Mapping Table in Figure 4-(c) and
made a getBlock method call with the associated “latest” value
(denoted as @_) and false to acquire the block without transaction
details. Lastly, it accessed the transaction attribute and returned a
valid index by applying the helper index method.

Compound Property. Aside from primitive properties, there exist
a number of object properties that capture object type parameters
such as transactions and log filters. Generator recursively generates
a value for each object field following the above approaches and
merges into an object. An array property captures an array type
parameter, and Generator recursively generates values based on its
base property and forms them into an array. For a union property,
it randomly selects one of the properties and generates its value.

3.5 Type-Preserving Mutation

To investigate any deviations against semantically-invalid argu-
ments as well, Mutator stochastically turns the generated template

1338

code into semantically-invalid code. While ETHERDIFFER enables
users to configure the mutation probability, it is set to 50% by default.
The mutation is based on the MutateTC function in Algorithm 2
and satisfies two characteristics: single-argument mutation and
type preservation. To effectively examine one property at a time,
Mutator randomly selects a single argument in the target method
call (Line 3). In case of compound type arguments, it selects one of
the object fields or array elements. Also, it is essential to preserve
the argument type as the library filters out miss-typed arguments
and does not make RPC method calls in such cases. Therefore, Mu-
tator looks up a property from specpg, that has the same type with
but not equivalent to the original argument property (Line 4). It
also takes subtype relations into account during property selec-
tion. Then, Mutator generates a valid argument for the selected
property (Line 5) and appends the new method call, argument of
which is replaced with the generated value (Line 6). This approach
ensures both semantically-invalidness and executability as it makes
use of an unintended property with a compatible type. Figure 4-
(d) presents the mutated code from the template code. Mutator
selected p_Range(1,1024) and replaced the original index with a
semantically-invalid integer value while preserving t_Number. Fi-
nally, Test Case Converter instantiates a set of four test cases from
possibly-mutated template code, and Error Checker and Value Checker
report in case of respective deviations.

4 EVALUATION

ETHERDIFFER examines the deviations among four major Ethereum
nodes that take up 99.7% of the main network. Particularly, we chose
their most recent stable versions by the time of evaluation as our
targets: Geth v1.10.21-stable, Erigon 2022.07.04-alpha, Nethermind
v1.13.6, and Hyperledger Besu v22.4.4. To evaluate the effectiveness
of our techniques and disclose any deviations, we set up the follow-
ing research questions. Also, we compare ETHERDIFFER with the
official node testing tool maintained by the Ethereum Foundation.

e RQ1 (Effectiveness of Test Case Generation): How much
do the semantically-valid test cases complete their execu-
tions without errors? Also, how much do semantically-invalid
test cases preserve their executability without library errors?

e RQ2 (Deviation and Bug Detection Capability): How
many deviations and bugs has ETHERDIFFER detected?

¢ RQ3 (Comparison with the Official Tool): How effective
is ETHERDIFFER compared to the official testing tool for node
implementations?

EtherDiffer: Differential Testing on RPC Services of Ethereum Nodes

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 2: Overview of All Deviation Classes Found by ETHERDIFFER

Category Deviation Class Report | RC | Category Deviation Class Report | RC
(IAH-1) Number of Transactions in Invalid Block Vs i (UA-1) Block Structure that Matches Uncle Hash Vs T
(IAH-2) Past Event Logs in Invalid Block Vs i Uncle (UA-2) Uncle at Certain Index in Uncle Block Vs T
(IAH-3) Transaction at Certain Index in Invalid Block Vs ¥ Access (UA-3) Transaction at Certain Index in Uncle Block Vs T
(IAH-4) Number of Uncles in Invalid Block Vs i (sec.4.2.3) | (UA-4) Number of Uncles in Uncle Block Vs T
(IAH-5) Uncle at Certain Index in Invalid Block Vs T (UA-5) Number of Transactions in Uncle Block Vs T
Invalid (IAH-6) Code of Specific Contract in Invalid Block Vs ¥ (MS-1) No Method for Pending Transaction List viE'B] i
Argument | (IAH-7) Balance of Specific Address in Invalid Block Vs i lsvl[lEth;’i (MS-2) No Method for Account State Structures VE*
Handling | (IAH-8) Nonce of Specific Account in Invalid Block Vs ¥ (Sefzz_ 4 (MS-3) No Method for List of Account Addresses vE i
(sec. 4.2.1) (IAH-9) Storage of Specific Contract in Invalid Block Vs k3 (MS-4) No Method for Current Protocol Version vG ¥
(IAH-10) Account State Structure of Unknown Account Vs b4 (FF-1) Field Difference in Uncle Block Structures V(G,E] T
(IAH-11) Past Event Logs in Wrong Block Range Vs i (FF-2) Field Difference in Event Log Structures (AD) i
(IAH-12) Transaction Fee History in Wrong Block Range Vs ¥ Fields (FF-3) Field Difference in Canonical Block Structures (AD) i
(IAH-13) Transaction in Block at Invalid Index N I Fo:;dats (FF-4) Field Difference in Receipt Structures (AD)
(IAH-14) Uncle in Block at Invalid Index Vs i (sec. 4.2.5) (FF-5) Field Difference in Transaction Structures vB* i
(GL-1) Improper Max Fee Parameter for Gas Estimation Vs ¥ (FF-6) Format Inconsistency in Contract Storage Keys VB* I
(GL-2) Low Gas Limit Parameter for Gas Estimation Vs ¥ (FF-7) Format Inconsistency in Storage Slot Values (AD) ¥
Gas (GL-3) High Gas Limit Parameter for Gas Estimation Vs i (IB-1) Invalid Total Difficulty in Uncle Headers Viens) | T
Estimation | (GL-4) Invalid Transaction Type for Gas Estimation Vs ¥ (IB-2) Wrong Values in Account State Structures ik i
and (GL-5) Invalid Account Nonce for Gas Estimation Vs ¥ Imple- (IB-3) Wrong Log Index in Event Log Structures VB * T
Local (GL-6) Insufficient Funds in Account for Gas Estimation Vs i | mentation | (IB-4) Wrong Log Identifier in Event Log Structures vB* T
Execution (GL-7) Improper Max Fee Parameter for Local Execution Vs ¥ Bugs (IB-5) Wrong Transaction Fee History in Block Range vB* %
(sec. 422) (GL-8) Low Gas Limit Parameter for Local Execution Vs ¥ (sec. 4.2.6) (IB-6) Wrong Gas Estimation for Contract Executions | v{n+p*]
(GL-9) Invalid Transaction Type for Local Execution Vs i (IB-7) Crash Bug while Retrieving Past Event Logs VE* T
(GL-10) Invalid Account Nonce for Local Execution Vs* ¥ (IB-8) DoS while Retrieving Past Event Logs VB* T

Vs: Specification vg: Geth vg: Erigon vN: Nethermind ~ v: Besu
v1..]: Multiple Nodes ~ (AD): Acceptable Deviation *: Confirmed or Patched

: Detection Failure of Rpc-compAT Due to Chain Generation (sec. 4.3.1)
: Detection Failure of rRec-compAT Due to Test Case Generation (sec. 4.3.2)

A

Table 3: Overview of Error Handling and Uncle Access Deviations of Node Implementations

IAH-1 IAH-2 IAH-3 IAH-4 IAH-5 IAH-6 IAH-7 IAH-8 IAH-9 IAH-10 IAH-11 IAH-12 IAH-13 IAH-14
o Geth null [1 null null null Error Error Error Error Valce [1 Valgee null null
o Erig. null] null null null Val.,ge* Error Error Error - Error Valfee null null
o Neth. Error Error Error Error Error Error Error Error Error Valgee Error Error Error Error
® Besu null] null null null Error* null 0 null Error 1 Error null null
GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7 GL-8 GL-9 GL-10 UA-1 UA-2 UA-3 UA-4 UA-5
Error Valgas Valgas Valgas Valgas Valgas Error Error Val,, Valg Valpeek Valplock null Valpum Valpum
Error Valgyg Error Valgys Valgas Error Error Valeay Valgy Valgy Error null Error null null
Valgas Error Valgss Error Error Valgys Val., Valgy Error Error null Error Error Error Error
Valgas Valgas Valgas Valgas Valgas Valgas Error Error Valg, Valg Valpeek Valplock Valiy Valpum Valpum

*: Erigon and Besu can return Error and null respectively, depending on the argument.

4.1 Effectiveness of Test Case Generation

4.1.1 Semantically-Valid Test Cases. ETHERDIFFER leverages our
property-based technique to generate semantically-valid test cases.
To evaluate its effectiveness, we generated 3,000 valid test cases
and checked whether they successfully completed executions with-
out any errors. Table 1-(a) shows the result as well as the num-
bers of generated properties in corresponding test cases. The re-
sult confirms the effectiveness of our technique as 2,965 valid test
cases completed their executions and 4,110 out of the total 4,168
properties belonged to the execution-completed ones. This ensures
that our technique generates a semantically-valid argument with
98.6% confidence or even higher as some of the arguments in the
execution-failed test cases can be still valid. We manually investi-
gated the 35 failed test cases and confirmed that each argument was

1339

**: Erigon does not support the method. (see MS-2)

yet semantically-valid but resulted in errors when combined in most
cases. For example, getPastLogs method receives two block number
arguments that together specify a block range to retrieve event
logs from. While ETHERDIFFER succeeded at generating a valid
argument for each block number, there were occasions when the
starting number was greater than the ending number, producing er-
rors. We believe that our future work to add semantic requirements
in argument combinations can eliminate the errors.

4.1.2 Semantically-Invalid Test Cases. ETHERDIFFER applies our
type-preserving mutation strategy to convert semantically-valid
test cases into invalid ones. To evaluate its effectiveness, we per-
formed mutations on 3,000 valid test cases and checked whether
the invalid test cases did not trigger library errors and returned

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

results including node-produced errors. Table 1-(b) shows the result
as well as the mutated types in corresponding test cases. The result
confirms that our mutation technique effectively preserves the exe-
cutability with 95.4% confidence as 2,863 invalid test cases produced
no library errors. One thing to note is that there were no mutations
for arrays as each array type consists of a single property and thus
has no mutation candidate. We manually investigated the 137 failed
test cases and confirmed that while each mutation successfully
preserved the type, they mostly failed as the library performs addi-
tional checks on transaction object arguments to reduce transaction
failures. For example, the majority of cases occurred as the mutated
gas value was smaller than the minimum required gas. We believe
that a more sophisticated mutation approach based on intersecting
with the original property can further improve the effectiveness.

4.2 Deviation and Bug Detection Capability

To detect any deviations among Ethereum node implementations,
we conducted 10 iterations of ETHERDIFFER. Particularly, we con-
figured each iteration to generate a 300-height non-deterministic
chain and 600 test case sets with the default mutation probability.
In total, our differential testing was based on 6,000 test case sets
consisting of 24,000 test cases, and ETHERDIFFER detected error
deviations and value deviations in 1,536 and 1,693 test case sets,
respectively. We randomly selected 300 error-deviating and 300
value-deviating sets for manual investigation and confirmed that
only 11 deviating sets were false positives, accounting for 1.8% of
the total. The false positives were derived from the deviations as
well, as the node implementations returned different values during
the process of dynamic property generation. For the remaining true
positives, we clustered them into six major categories and 48 differ-
ent classes as shown in Table 2. We analyzed each class further and
reported 44 deviation classes to either RPC specification developers
or node developers based on the following criteria:

e (Report to Specification: 29 Deviation Classes) The deviation
class was caused by the lack of clear specification such as
error handling and uncle access.

e (Report to Node Developers: 15 Deviation Classes) The devi-
ation class was caused by node implementations that either
disconform to the specification or have bugs.

We did not make reports for the remaining four classes as they
correspond to simply defining additional fields in data structures.
For the rest of this section, we briefly explain each of the deviation
categories found by ETHERDIFFER.

4.2.1 Invalid Argument Handling. ETHERDIFFER detected 14 devia-
tion classes in terms of handling invalid arguments of RPC method
calls. The classes can be grouped into four sub-categories based
on the argument types: (1) invalid blocks, (2) unknown accounts,
(3) wrong block ranges, and (4) invalid indices. While there exist
many RPC methods with a block parameter, ETHERDIFFER found
that node implementations handle nine of the methods in different
ways when a given block argument is invalid. Table 3 shows the re-
turn values from each implementation. As the columns from IAH-1
to IAH-9 show, the return values vary in the range of the following:
null, [], an error, or even a normal value. Another finding is that
even a single implementation handles the methods inconsistently.
For example, while Geth returns null or [] for five of the methods,

1340

Shinhae Kim and Sungjae Hwang

it just throws an error for the rest. Additionally, node implementa-
tions have divergent handling logic on five methods that receive
an account, a block range, or an index as an argument. When an
invalid argument is given, the range of possible return values is
the same as that of the invalid block case. Particularly, some imple-
mentations just return a normal account or transaction fee history
even if they do not actually exist. Although all the fields are set
with zero, this can still lead to misconception of DApp developers.

Finding 1: Ethereum node implementations have divergent

handling logic on invalid arguments.

Finding 2: Even a single node implementation handles each

method in an inconsistent way.

4.2.2 Gas Estimation and Local Execution. The core component of
a decentralized application is its backend smart contracts which
implement the service logic. And as actual interactions with smart
contracts require transaction fees, the RPC interface offers two
ways of interactions without fees and enables users to validate their
transactions in advance: gas estimation and local contract execution.
However, while the interaction requires an object argument with
various fields designated, ETHERDIFFER found that each implemen-
tation performs validation on a very different set of fields. In other
words, while some implementations return an error in case of an
invalid field, the others just return a normal result: an estimated gas
value or a contract return value. The columns from GL-1 to GL-10
in Table 3 summarize the return values when invalid field values
are given. As the results show, none of the implementations share
the same set of fields to validate. For example, while Geth throws an
error against improper fee in gas estimation, Nethermind throws an
error against low gas limit and invalid transaction type and nonce.
Also, as in invalid argument handling, even a single implementa-
tion does not validate fields consistently. For example, while Geth
has no validation on gas limit in gas estimation, it throws an error
against low gas limit in local execution. These deviations can be
problematic as DApp developers usually rely on the results and
make actual transactions with the same field values.

Finding 3: Ethereum node implementations validate different
parameters in gas estimation and local execution.

4.2.3 Uncle Access. As explained earlier, the RPC specification has
no clarification with regard to non-deterministic event handling.
While uncle blocks are indicators of such occurrences, ETHERDIFFER
found five deviation classes in terms of handling them. Particularly,
node implementations returned deviated results when an uncle
hash is passed to five methods that expect a block hash argument.
The argument is still semantically-valid as an uncle hash is yet
another block hash. However, as a canonical chain only includes
the headers of once-valid uncle blocks, the return values from
accessing their body elements are up to the node implementations.
The columns from UA-1 to UA-5 in Table 3 show the return values
for each method, and the results show that the implementations
have different levels of support for original uncle block data: partial,
full, or none. While Geth supports most of the methods, it does
not provide access to the transactions existed in uncle blocks. Besu
fully supports uncle block access, and the other two nodes provide
no support by returning either an error or null.

EtherDiffer: Differential Testing on RPC Services of Ethereum Nodes

async function erigon() {
try {
let aa@ = "41";
let aa3 = "0x7f7B7¢c0992cCC777626EF18Cc3578D0d3b56a376";
let aa4 = [nulll;
let aa5 = "0x4a817c800"; // mutation code
return await web3_erigon.eth.getPastLogs ({
fromBlock: aa®, toBlock: aa5, address: aa3, topics: aa4
1
} catch (error) {
return "[ERROR] " + error.message;
}
3
async function besu() {
try {
let aa@ = "genesis";
let aa2 = "0x31aB061154876beb39912216E96F76756Bb3EFel1";
let aa3 = [null];
let aa4 = "1000000000000000000"; // mutation code
return await web3_besu.eth.getPastLogs ({
fromBlock: aa®, toBlock: aa4, address: aa2, topics: aa3
s
} catch (error) {
return "[ERROR] " + error.message;
}
}

Figure 5: Test Cases for Crash and Denial-of-Service Bugs

Finding 4: Ethereum node implementations provide different
levels of support for original uncle block data.

4.2.4 Method Support. The RPC specification defines a uniform
set of methods that Ethereum nodes should implement. However,
ETHERDIFFER found that the nodes have not implemented some
of the methods. Particularly, Geth and Besu have no support for a
single method, and Erigon lacks implementations for three methods
that return a pending transaction list or account data. We confirmed
that the nodes have not clearly noted the non-implementations in
their documentations except for one case. Even more, we found a
case where the documentation specified all the required information
to make a valid method call including example code snippets. This
can give false intuitions to DApp developers that their application
code is operating in the expected manner.

Finding 5: Ethereum node implementations do not provide
consistent sets of RPC methods to users.

4.2.5 Fields and Formats. ETHERDIFFER found two kinds of syn-
tactic deviations: structure fields and return value formats. While
the implementations define the core blockchain data structures
in their own programming languages, the structures consist of
slightly different sets of fields. Particularly, we found deviations in
five structure definitions: event logs, uncle blocks, canonical blocks,
transactions, and receipts. For example, while Geth and Erigon do
not define transactions field for uncle blocks, Nethermind and Besu
have the field with an empty array value. Also, only Besu does not
include type field for transactions. We analyzed the results and
reported those that disconform to the specification. In addition,
while the RPC interface offers two methods to access contract stor-
age, node implementations return its keys and values in different
formats such as the length of hexadecimal storage values.

1341

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Finding 6: The definitions of core data structures are slightly
different in node implementations.

Finding 7: Ethereum node implementations return storage
keys and values in inconsistent formats.

4.2.6 Implementation Bugs. The last category consists of eight
classes of implementation bugs. The total difficulty field in block
headers stores the value of accumulated mining work until the block.
However, we found a bug in each of three node implementations
that they either produced undefined or 0 in case of an uncle block
header. Also, there was a bug in Nethermind that returned zero for
non-zero storage values and proofs. Besu had three implementation
bugs with regard to the handling of event logs and transaction fee
history. Particularly, Besu returned wrong values for log indices
and identifiers at all times. Also, it returned arbitrary fee values
additionally when the number of requested blocks exceeded that of
available blocks. There existed two more bugs in Nethermind and
Besu that they produced wrongly estimated gas values for contract
executions. Lastly, we found two critical bugs in Erigon and Besu
that either crashed the node or blocked it from serving users. When
a significantly large value was used as the ending block number
for event log retrievals, a crash occurred in the handler method of
Erigon, and Besu did not serve any subsequent RPC requests until
resolved with a timeout. Figure 5 shows two example test cases
to trigger the bugs. The erigon function tries to acquire all event
logs originated from aa3. However, the block range is wrong as
the aa5 variable holds an invalid block value, and Erigon crashed
with a “method handler crashed” message when executed. Erigon
incorrectly assumed that toBlock is always less than the maximum
32-bit unsigned integer. After we reported this bug, it took less
than a day until the patch, which demonstrates the high severity
of the bug. Similarly, the besu function tries to retrieve all event
logs originated from aa2. However, the aa4 variable holds an invalid
block value, and Besu falls into denial-of-service for a specific time
period with a “Thread blocked” message.

Finding 8: Ethereum nodes have various implementation bugs,
which include crash and DoS bugs.

4.2.7 Discussion: Real-World Impacts. After we reported 29 devia-
tion classes, our findings received an acknowledgement from the
specification developers. Moreover, the developers even approved
to contribute our test cases to their official repository [26]:

“thank you for these reports, this is very helpful”,
“would be very happy to have you contribute your tests”

Similarly, we reported 15 deviation classes to node developers and
received an acknowledgement of our implementation [25]:

“super interested in this project - - - like to read more”

The developers have either patched or confirmed 13 of the reported
classes, while they had their own rationale for the rest. One thing
to note is that some uncle-related deviation classes may lose their
value in the main network due to the merge. However, they still
have practical impacts as there exist Ethereum-based PoW networks
with 3.63 billion dollars of market capitalizations [34]. Also, while
ETHERDIFFER can fail at detecting PoS-specific deviations such as
handling of block finality, we leave it as future work.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA
Table 4: Comparison of RPc-cOMPAT and ETHERDIFFER

(a) Chain Generation (b) Test Case Generation

299 Transactions 4,762 | 71.4% Coverage 100%
0 Event Logs 2,737 | 55% Unique TCs 81.8%
0 Chain Events 1,001 0% Error TCs 28.9%

RPC-COMPAT (left), ETHERDIFFER (right)

4.3 Comparison with the Official Tool

As Ethereum nodes are the entry points for end users and thus
significant, the Ethereum Foundation has developed its own testing
platform called Hive [13] and actively validates the node implemen-
tations with various tools on top of it. Particularly, it offers a testing
tool called rRpc-coMPAT [14], which generates a chain and validates
the consistency of the implementations with a set of test cases. As
RPC-COMPAT is designed for conformance tests, we closely compare
the tool with ETHERDIFFER in terms of two technical aspects in this
section: chain generation and test case generation. For fairness, we
configured RPC-COMPAT to generate a 300-height chain and 600 test
cases and compared with a single iteration of ETHERDIFFER.

4.3.1 Chain Generation. We first compared the non-determinism
in their generated chains as it is the key characteristic of blockchain
and significant for deviation detection. Particularly, the previous
section 2.1 explained that blockchain is non-deterministic in terms
of block elements and chain events. Therefore, we extracted and
analyzed the transactions and event logs in each of their chains as
they are the main block elements. Also, we counted the number of
chain event occurrences based on the existence of uncle headers.
As Table 4-(a) shows, ETHERDIFFER significantly outperformed rpc-
coMPAT in all three aspects of chain generation. More surprisingly,
our investigation confirmed that RPC-COMPAT generates a chain
in a completely deterministic manner that every block except the
pre-defined genesis contains a single, exactly-equivalent transac-
tion with no event log. Also, it does not produce non-deterministic
chain events such as temporal forks at all. This leads to a signif-
icant degradation in its effectiveness and failures of detecting at
least 13 deviation classes shown in Table 2. On the other hand,
ETHERDIFFER applies multi-concurrent transactions and generates
a non-deterministic chain where each block contains unpredictable
numbers of transactions and event logs. Also, the block elements
are diverse as they are based on 109 different transactions. Lastly,
the propagation delay in our network successfully triggered a sub-
stantial number of non-deterministic chain events.

4.3.2 Test Case Generation. We then compared the test case gen-
eration of each tool. While both tools successfully generated 600
test cases, we evaluated them in the following three aspects: (1)
the coverage of RPC methods in the specification, (2) the ratio of
unique test cases, and (3) the ratio of test cases that triggered node-
produced errors. The first aspect is to ensure that the test cases
cover the complete list of RPC methods except the mining-related
and Geth-specific ones, while the latter two are to evaluate the
test case diversity for each method. Table 4-(b) shows the overall
results, and the coverage confirms that Rpc-compAT validates only
a subset of RPC methods. This is due to its design shortcomings
such as the lack of certain block elements and non-deterministic

1342

Shinhae Kim and Sungjae Hwang

chain events. Furthermore, Rpc-cOMPAT has significantly low test
case diversity as it generates only one or two “static” test cases for
each method. Our evaluation confirmed that 94.5% of the generated
test cases were duplicates with no support for error-triggering test
cases. These partial support for RPC methods and low test case
diversity significantly degrade its effectiveness and result in failures
of detecting at least 45 deviation classes shown in Table 2. On the
other hand, ETHERDIFFER validates the complete list of RPC meth-
ods. Also, it dynamically generates test cases, and our evaluation
confirmed that 81.8% were unique. Lastly, 28.9% of the unique test
cases triggered node-produced errors, which demonstrates that
ETHERDIFFER sufficiently examines error handlings as well.

4.4 Threats to Validity

The evaluation results showed that ETHERDIFFER effectively gener-
ated test cases and detected a variety of deviation classes. Also, it
significantly outperformed the official node testing tool in terms of
non-deterministic chain and test case generation. However, while
our test case generation relies on the manually-converted specifica-
tion, there could be human errors during the process of conversion.
Also, as ETHERDIFFER does not cover all possible arguments for
RPC method calls, some other deviations can possibly remain undis-
covered. We believe that our conversion was correct as the specifi-
cation is well-structured with specific patterns and the descriptions
provide sufficient details to extract and cluster properties. Also,
the success ratios of test case generation confirmed the validity of
our conversion. Besides, we believe that our findings of deviation
classes have already produced high impacts to the community as
acknowledged by both specification and node developers.

5 RELATED WORK

Analysis of Smart Contracts and DApps. As on-chain smart
contracts play a vital role in the core logic of DApps, ensuring their
correctness and security is crucial for the development of reliable
DApps. Prior research efforts have disclosed various vulnerabilities
in smart contracts [23, 32, 37] and have developed automated tools
for their detection [1, 4, 22, 32, 39, 42, 45]. Additionally, several
measurement studies have been conducted to assess the strengths
and weaknesses of these tools [30, 35, 46]. Moreover, with the
increasing popularity of DApps, researchers have extended their
investigation beyond smart contracts to encompass the entire DApp
ecosystem. For example, Zhang et al. [47] identified synchronization
bugs arising from inconsistencies between on-chain and off-chain
states, and Li et al. [27] demonstrated a denial-of-service attack
on Ethereum RPC services. Also, Su et al. [31] explored past real-
world attacks on Ethereum DApps. However, despite these valuable
contributions to the correctness and security of smart contracts
and DApps, none of them has investigated the deviations among
different node implementations in terms of their RPC services. Also,
the previous work had impacts on specific DApps only, whereas
ETHERDIFFER contributes to the ecosystem in general as all DApps
depend on the RPC services of Ethereum nodes.

Differential Testing. Differential testing has proven to be an ef-
fective method for identifying deviations in software and has been
successfully applied in diverse domains, such as JVMs [43, 50, 51],
deep learning systems [24], and x86 disassemblers [41]. Recently, it

EtherDiffer: Differential Testing on RPC Services of Ethereum Nodes

has also been adopted in the blockchain domain. Fu et al. [48] intro-
duced EVMFuzzer, a tool that mutates real-world smart contracts us-
ing eight predefined mutators. By executing the mutated contracts,
EVMFuzzer identified inconsistencies in opcode sequence execution
and gas usage across four EVM implementations. Another frame-
work, NeoDiff [9], focuses on the virtual machine of Neo smart
contracts and directly generates test bytecodes using bytecode-level
mutators. This approach produces valid opcode sequences not at-
tainable by high-level programming language compilers. Similarly,
EVMLab [11] deploys random test bytecodes and invokes them
within a single transaction to evaluate different Ethereum clients.
Yang et al. [49] developed Flufty, a tool designed to detect consensus
bugs in Ethereum that can lead to errorneous states within the block-
chain. Notably, Fluffy applies multiple transactions and enables the
detection of bugs that cannot be detected with a single transac-
tion. Ma et al. [21] introduced LOKI, which also detects consensus
bugs but uniquely employs a dynamic state model generated from
real-time consensus information. The dynamic information enables
LOKI to detect complex consensus bugs in four different blockchain
platforms including Ethereum that would be bypassed with fixed
types of inputs. Although the frameworks have effectively detected
deviations among nodes, none of them is designed to investigate
the RPC services. The closest tool to ETHERDIFFER is RPC-COMPAT
maintained by the Ethereum Foundation. However, our evaluation
showed that RPc-coMPAT has significantly low effectiveness in both
technical aspects.

6 CONCLUSION

In this research, we aimed at finding any deviations among four
major node implementations in terms of their RPC services. The
deviations can exist as the RPC specification does not clarify the
expected behaviors in case of non-deterministic chain events and in-
valid arguments. To effectively detect such deviations, we proposed
two test case generation techniques and implemented ETHERDIFFER,
an automatic differential testing tool. ETHERDIFFER first generates
a non-deterministic chain by multiple-and-concurrent transaction
injection and propagation delay. Then, it applies our techniques to
generate both semantically-valid and invalid-yet-executable test
cases. ETHERDIFFER executes them on each target node and reports
if any error deviations or value deviations are detected. Our evalu-
ation showed that ETHERDIFFER generated both valid and invalid
test cases with the success ratios of 98.8% and 95.4%, respectively.
Also, it detected 48 deviation classes, which include 11 implemen-
tation bugs such as crash and denial-of-service bugs. We reported
44 of the detected classes to the specification and node develop-
ers and received acknowledgements as well as bug patches. Lastly,
ETHERDIFFER significantly outperformed the official node testing
tool in terms of both chain and test case generation. We believe that
our research findings can stabilize the ecosystem of decentralized
applications by eliminating the inconsistencies among nodes.

7 DATA AVAILABILITY

To contribute to openness in science, we disclose the replication
package [28] and evaluation datasets [29] to the public. As they are
archived on a preserved digital repository, anyone can download
the package and datasets at any time from the links.

1343

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

ACKNOWLEDGMENTS

This work was supported by Institute of Information & Commu-
nications Technology Planning & Evaluation (II'TP) grant funded
by the Korea government (MSIT) (No.2022-0-00688,AI Platform to
Fully Adapt and Reflect Privacy-Policy Changes), (No. 2022-0-01199;
Graduate School of Convergence Security, Sungkyunkwan Univer-
sity), and the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No0.2022R1F1A1074495)

REFERENCES

[1] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor and Prateek Saxena.

2019. Exploiting the Laws of Order in Smart Contracts. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).

363-373. https://doi.org/10.1145/3293882.3330560

Paul Bouchon. 2022. Remote Procedure Call Specification. Retrieved January

4, 2023 from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#

error-codes

ChainSafe. 2016. Web3.js - Ethereum JavaScript APL. Retrieved January 4, 2023

from https://github.com/ChainSafe/web3.js/tree/v1.7.4

Chenguang Zhu, Ye Liu, Xiuheng Wu, and Yi Li. 2022. Identifying Solidity

Smart Contract API Documentation Errors. In Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 1-13. https:

//doi.org/doi.org/10.1145/3551349.3556963

Infura Community. 2019. How Does the Load Balancer Work? Retrieved January

4, 2023 from https://community.infura.io/t/how-does-the-load-balancer-work/

1090

ConsenSys. 2020. Ethereum by the Numbers - May 2020. Retrieved January 23, 2023

from https://consensys.net/blog/news/ethereum-by-the-numbers-may- 2020/

Cryptoslate. 2023. Coin Rankings. Retrieved January 23, 2023 from https:

//cryptoslate.com/coins/

DappRadar. 2023. Top Ethereum Dapps. Retrieved January 23, 2023 from https:

//dappradar.com/rankings/protocol/ethereum

Dominik Maier, Fabian Fafiler and Jean-Pierre Seifert. 2021. Uncovering Smart

Contract VM Bugs via Differential Fuzzing. In Proceedings of the 5th Reversing

and Offensive-oriented Trends Symposium (ROOT). 11-22. https://doi.org/10.1145/

3503921.3503923

Smart Contract Engineer. 2022. Solidity by Example. Retrieved January 4, 2023

from https://solidity-by-example.org/

Ethereum. 2019. EVM Lab Utilities. Retrieved July 24, 2023 from https://github.

com/ethereum/evmlab

Ethereum. 2022. Ethereum JSON-RPC Specification. Retrieved January 4, 2023

from https://ethereum.org/en/developers/docs/nodes-and-clients/

Ethereum. 2023. Hive - Ethereum End-to-End Test Harness. Retrieved January 4,

2023 from https://github.com/ethereum/hive

Ethereum. 2023. Rpc-Compat Simulator. Retrieved January 10, 2023 from https:

//github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat

Ethereum.org. 2022. JSON-RPC APL Retrieved January 4, 2023 from https:

//ethereum.org/en/developers/docs/apis/json-rpc/

Ethereum.org. 2022. Nodes and Clients. Retrieved January 4, 2023 from https:

//ethereum.org/en/developers/docs/nodes-and-clients/

Ethereum.org. 2022. Proof-of-Stake. Retrieved January 11, 2023 from https:

//ethereum.org/en/developers/docs/consensus-mechanisms/pos/

Ethereum.org. 2022. Proof-of-Work. Retrieved January 11, 2023 from https:

//ethereum.org/en/developers/docs/consensus-mechanisms/pow/

Ethernodes. 2023. Ethereum Mainnet Statistics. Retrieved January 23, 2023 from

https://ethernodes.org

Ethereum Stack Exchange. 2016. What Happens When a Transaction Nonce is

Too High? Retrieved January 4, 2023 from https://ethereum.stackexchange.com/

questions/2808/what-happens-when-a-transaction-nonce-is-too-high

Fuchen Ma, Yuanliang Chen, Meng Ren, Yuanhang Zhou, Yu Jiang, Ting Chen,

Huizhong Li and Jiaguang Sun. 2023. LOKI: State-Aware Fuzzing Framework

for the Implementation of Blockchain Consensus Protocols. In Proceedings of

the 30th Annual Network and Distributed System Security Symposium (NDSS).

https://doi.org/10.14722/ndss.2023.24078

Haijun Wang, Yi Li, Shang-Wei Lin, Lei Ma, and Yang Liu. 2019. VULTRON:

Catching Vulnerable Smart Contracts Once and for All In Proceedings of the 41st

International Conference on Software Engineering: New Ideas and Emerging Results

(ICSE-NIER). 1-4. https://doi.org/doi.org/10.1109/ICSE-NIER.2019.00009

Sungjae Hwang and Sukyoung Ryu. 2020. Gap between Theory and Practice:

An Empirical Study of Security Patches in Solidity. In Proceedings of the 42nd

ACM/IEEE International Conference on Software Engineering (ICSE). 542-553.

https://doi.org/10.1145/3377811.3380424

[24] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz:
Differential Fuzzing Testing of Deep Learning Systems. In Proceedings of the 26th

[11

[12]

[13

(14]

[15

[16]

(18

[19

[20

[21]

[22

(23]

https://doi.org/10.1145/3293882.3330560
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#error-codes
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1474.md#error-codes
https://github.com/ChainSafe/web3.js/tree/v1.7.4
https://doi.org/doi.org/10.1145/3551349.3556963
https://doi.org/doi.org/10.1145/3551349.3556963
https://community.infura.io/t/how-does-the-load-balancer-work/1090
https://community.infura.io/t/how-does-the-load-balancer-work/1090
https://consensys.net/blog/news/ethereum-by-the-numbers-may-2020/
https://cryptoslate.com/coins/
https://cryptoslate.com/coins/
https://dappradar.com/rankings/protocol/ethereum
https://dappradar.com/rankings/protocol/ethereum
https://doi.org/10.1145/3503921.3503923
https://doi.org/10.1145/3503921.3503923
https://solidity-by-example.org/
https://github.com/ethereum/evmlab
https://github.com/ethereum/evmlab
https://ethereum.org/en/developers/docs/nodes-and-clients/
https:// github.com/ethereum/hive
https://github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat
https://github.com/ethereum/hive/tree/master/simulators/ethereum/rpc-compat
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethernodes.org
https://ethereum.stackexchange.com/questions/2808/what-happens-when-a-transaction-nonce-is-too-high
https://ethereum.stackexchange.com/questions/2808/what-happens-when-a-transaction-nonce-is-too-high
https://doi.org/10.14722/ndss.2023.24078
https://doi.org/doi.org/10.1109/ICSE-NIER.2019.00009
https://doi.org/10.1145/3377811.3380424

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 739-743. https://doi.org/
10.1145/3236024.3264835

[25] JosephK95. 2022. Erigon RPC Service Consistency against Other Client Implemen-
tations #1. Retrieved July 24, 2023 from https://github.com/ledgerwatch/erigon/
issues/4962

[26] JosephK95. 2022. Proposal: Error Handling Specification #1. Retrieved July 24,
2023 from https://github.com/ethereum/execution-apis/issues/286

[27] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Tang, XiaoFeng Wang, and Xiapu Luo.

2021. As Strong As Its Weakest Link: How to Break Blockchain DApps at RPC

Service. In Proceedings of the 28th Annual Network and Distributed System Security

Symposium (NDSS). 616-633. https://doi.org/10.14722/ndss.2021.23108

Shinhae Kim and Sungjae Hwang. 2023. EtherDiffer: Differential Testing on

RPC Services of Ethereum Nodes (Code). Retrieved August 10, 2023 from https:

//doi.org/10.6084/m9.figshare.23913096.v1

[29] Shinhae Kim and Sungjae Hwang. 2023. EtherDiffer: Differential Testing on
RPC Services of Ethereum Nodes (Data). Retrieved August 9, 2023 from https:
//doi.org/10.6084/m9.figshare.21936555.v1

[30] Shinhae Kim and Sukyoung Ryu. 2020. Analysis of Blockchain Smart Contracts:
Techniques and Insights. In Proceedings of the 5th IEEE Secure Development Con-
ference (SecDev). 65-73. https://doi.org/10.1109/SecDev45635.2020.00026

[31] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing and
Baoxu Liu. 2021. Evil Under the Sun: Understanding and Discovering Attacks on
Ethereum Decentralized Applications. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security). 1307-1324.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security (CCS). 254-269. https:
//doi.org/10.1145/2976749.2978309

[33] Bernard Marr. 2022. The Top 10 Tech Trends In 2023 Everyone Must Be Ready

For. Retrieved January 11, 2023 from https://www.forbes.com/sites/bernardmarr/

2022/11/21/the-top- 10- tech-trends-in-2023-everyone-must-be-ready-for

MiningPoolStats. 2023. Mining Pool Stats. Retrieved January 23, 2023 from

https://miningpoolstats.stream/

[35] Monika Angelo and Gernot Salzer. 2019. A Survey of Tools for Analyzing
Ethereum Smart Contracts. In Proceedings of the 1st IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON). 69-78. https:
//doi.org/10.1109/DAPPCON.2019.00018

[36] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Decen-
tralized Business Review (2008).

[37] Nicola Atzei, Massimo Bartoletti and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts. In Proceedings of the 6th International Conference
on Principles of Security and Trust (POST). 164-186. https://doi.org/10.1007/978-
3-662-54455-6_8

[38] Fellowship of Ethereum Magicians. 2018. Remote Procedure Call Specifica-

tion. Retrieved January 4, 2023 from https://ethereum-magicians.org/t/remote-

procedure- call-specification/1537

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart

Contracts. In Proceedings of the 25th ACM SIGSAC Conference on Computer and

™
&

[34

[39

Shinhae Kim and Sungjae Hwang

Communications Security (CCS). 67-82. https://doi.org/10.1145/3243734.3243780
Evgeny Ponomarev. 2019. DApp Survey Results 2019. Retrieved January
4, 2023 from https://medium.com/fluence-network/dapp- survey-results-2019-
a04373db6452

Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. N-version Disassembly: Differential Testing of x86 Disassemblers. In
Proceedings of the 19th International Symposium on Software Testing and Analysis
(ISSTA). 265-274. https://doi.org/10.1145/1831708.1831741

Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting Nondetermin-
istic Payment Bugs in Ethereum Smart Contracts. In Proceedings of the 34th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA). 1-29. https://doi.org/10.1145/3360615

Sungjae Hwang, Sungho Lee, Jihoon Kim and Sukyoung Ryu. 2021. JUSTGen:
Effective Test Generation for Unspecified JNI Behaviors on JVMs. In Proceedings
of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE).
1708-1718. https://doi.org/10.1109/ICSE-Companion52605.2021.00073
Solidity Team. 2022. Solidity. Retrieved January 4, 2023 from https://soliditylang.
org/

Teng Zhou, Kui Liu, Li Li, Zhe Liu, Jacques Klein and Tegawendé F Bissyandé. 2021.
SmartGift: Learning to Generate Practical Inputs for Testing Smart Contracts. In
Proceedings of the 37th IEEE International Conference on Software Maintenance
(ICSM). 23-34. https://doi.org/10.1109/ICSME52107.2021.00009

Thomas Durieux, Jodo F. Ferreira, Rui Abreu and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In Pro-
ceedings of the 42nd ACM/IEEE International Conference on Software Engineering
(ICSE). 530-541. https://doi.org/10.1145/3377811.3380364

Wugi Zhang, Lili Wei, Shuqging Li, Yepang Liu, and Shing-Chi Cheung. 2021.
DArcher: Detecting On-Chain-Off-Chain Synchronization Bugs in Decentralized
Applications. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 553-565. https://doi.org/10.1145/3468264.3468546

Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang, Huizhong Li,
and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulnerabilities via Fuzz Testing.
In Proceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
1110-1114. https://doi.org/10.1145/3338906.3341175

Youngseok Yang, Taesoo Kim and Byung-Gon Chun. 2021. Finding Consensus
Bugs in Ethereum via Multi-Transaction Differential Fuzzing. In Proceedings of
the 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 349-365.

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of JVM
Implementations. In Proceedings of the 41st IEEE/ACM International Conference on
Software Engineering (ICSE). 1257-1268. https://doi.org/10.1109/ICSE.2019.00127
Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Differential Testing of JVM Implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 85-99. https://doi.org/10.1145/2908080.2908095

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://github.com/ledgerwatch/erigon/issues/4962
https://github.com/ledgerwatch/erigon/issues/4962
https://github.com/ethereum/execution-apis/issues/286
https://doi.org/10.14722/ndss.2021.23108
https://doi.org/10.6084/m9.figshare.23913096.v1
https://doi.org/10.6084/m9.figshare.23913096.v1
https://doi.org/10.6084/m9.figshare.21936555.v1
https://doi.org/10.6084/m9.figshare.21936555.v1
https://doi.org/10.1109/SecDev45635.2020.00026
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for
https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for
https://miningpoolstats.stream/
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://ethereum-magicians.org/t/remote-procedure-call-specification/1537
https://ethereum-magicians.org/t/remote-procedure-call-specification/1537
https://doi.org/10.1145/3243734.3243780
https://medium.com/ fluence-network/dapp-survey-results-2019-a04373db6452
https://medium.com/ fluence-network/dapp-survey-results-2019-a04373db6452
https://doi.org/10.1145/1831708.1831741
https://doi.org/10.1145/3360615
https://doi.org/10.1109/ICSE-Companion52605.2021.00073
https://soliditylang.org/
https://soliditylang.org/
https://doi.org/10.1109/ICSME52107.2021.00009
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3468264.3468546
https://doi.org/10.1145/3338906.3341175
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2908080.2908095

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain Non-determinism
	2.2 Ethereum DApps and JavaScript Libraries

	3 Methodology
	3.1 Overview
	3.2 Non-deterministic Chain Generation
	3.3 Domain-Specific Language
	3.4 Property-Based Template Code Generation
	3.5 Type-Preserving Mutation

	4 Evaluation
	4.1 Effectiveness of Test Case Generation
	4.2 Deviation and Bug Detection Capability
	4.3 Comparison with the Official Tool
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

