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Abstract—Runtime verification (RV) uses monitors, which are
dynamically synthesized from formal specifications (specs), to
check running programs against specs. RV of passing tests in
many open-source projects found hundreds of new bugs. But,
high overheads make it hard to use RV for testing in practice.

We propose Valg, the first on-the-fly selective RV technique for
testing, and the first to use reinforcement learning (RL) to speed
up RV. Valg leverages a recent finding: 99.87% of monitors are
redundant for testing; they wastefully re-check unique traces—
sequences of events, e.g., method calls—that the other necessary
0.13% already checked. Valg uses feedback about redundancy of
prior monitors and events to selectively monitor only necessary
ones subsequently. A key idea in Valg is our novel formulation
of selective monitor creation as a two-armed bandit RL problem
that rewards necessary monitors and penalizes redundant ones.

We implement Valg for Java and compare it with state-of-the-
art RV tools on one revision each of 64 open-source projects.
With default RL hyperparameters, Valg is up to 20.2x and
551.5x faster than JavaMOP and TraceMOP, respectively. For
example, Valg takes only 11.6 minutes in total to monitor three
projects where TraceMOP takes 3.02 days in total. With default
RL hyperparameters, Valg finds 99.6% of spec violations found
by JavaMOP and TraceMOP, but it only checks 76.7% of their
unique traces on average. After tuning RL hyperparameters, Valg
checks 95.1% of unique traces on average with minor loss in
speed. Using tuned hyperparameters from one revision “into the
future” as code evolves preserves Valg’s high speedups and rate
of checked unique traces, without needing frequent re-tuning.

Index Terms—Runtime Verification, Software Testing, Rein-
forcement Learning

I. INTRODUCTION

Runtime verification (RV) [27], [43], [44], [57] checks if
running programs satisfy formal specifications (specs). RV
first instruments a program to signal spec-related events, e.g.,
method calls or field accesses. Then, at runtime, RV synthe-
sizes monitors—usually automata like finite-state machines—
from specs. Monitors check if event sequences, i.e., traces,
satisfy the specs. If a trace violates a spec, the corresponding
monitor raises a violation or performs error recovery.

RV research traditionally focused on its usage in production
settings, an approach that is now being adopted, e.g., in
ARTCAT [5] and the Linux kernel [20]. But, recent work
showed that RV also amplifies the bug-detection capability of
passing tests during development. RV found hundreds of bugs
that testing alone missed in many open-source projects, using
specs of correct JDK API usage protocols [64], [66], [78].

The reason is that these behavioral specs, which are hard to
express as test assertions, provide additional test oracles.

Wider RV adoption in continuous integration (CI) [47], [48]
is hindered by time overheads that monitors incur, especially
when checking many specs simultaneously. A recent study
shows that these overheads are still as high as 5,000x, or 27
hours, despite decades of research on reducing them [36].

We seek to speed up RV during testing by reducing two
kinds of waste caused by loops or multiple calls to a method:
1. Most traces for parametric specs are redundant. Para-
metric specs concern instances of related object types [18],
[19]. So, RV creates a monitor for each of the often hundreds
of millions of related instances [63]. But, the specs we use
are about method call sequences. So, if two identical traces
occur on a program path, then one of them is redundant
for bug finding. Such traces are not redundant in production
settings [5], [20], where RV must check every trace and
react to every violation. Based on this reasoning, Guan and
Legunsen [36] find that 99.87% of monitors are redundant for
testing because they wastefully re-check unique traces that the
other necessary 0.13% of monitors already checked.
2. Most events checked by monitors for non-parametric
specs are redundant. Non-parametric specs [61], [73] are
object agnostic; their event definitions often use very expensive
computation to check if a (static) method call, its argument(s),
or calling context violates an API. RV creates only one monitor
per non-parametric spec throughout a monitored program’s
execution. But, most events checked by such monitors during
testing are redundant: we find from data in [36] that over
99.99% of such events that violated an API are redundant.

These high degrees of redundant monitoring suggest that
faster RV via selective monitor creation (for parametric specs)
and selective event signaling (for non-parametric specs) is
needed and feasible. But, prior selective monitoring work
like QVM [4], SMCO [49], and time-triggered RV [16] only
target production settings. Purandare et al. [87] use loop
transformations to reduce redundant monitoring. But, their
static analysis has limited support for exceptions, has no tool
that one can use today, and was not evaluated during testing of
evolving software. §VI discusses related work in more detail.

We propose Valg (Danish for “choice”), the first on-the-
fly selective RV technique for testing, and the first to use



1 Appendable_ThreadSafe(Appendable a) {
2 Thread owner = null;
3 event safe_append before(Appendable a, Thread t) :
4 call(* Appendable+.append(..)) && target(a) &&
5 thread(t) && !target(StringBuffer) &&
6 condition(this.owner == null || this.owner == t) {
7 this.owner = t; }
8 event unsafe_append before(Appendable a, Thread t) :
9 call(* Appendable+.append(..)) && target(a) &&

10 thread(t) && !target(StringBuffer) &&
11 condition(this.owner != null && this.owner != t) {}
12 ere: safe_append*
13 @fail { /* print violation */ }

1 Math_ContendedRandom() {
2 Thread th = null;
3 event onethread_use before(Thread t) :
4 call(* Math.random(..)) && thread(t) &&
5 condition(this.th == null || this.th == t) {
6 this.th = t;
7 }
8 event otherthread_use before(Thread t) :
9 call(* Math.random(..)) && thread(t) &&

10 condition(this.th != null && this.th != t) {
11 }
12 ere : onethread_use*
13 @fail { /* print violation */ }

Fig. 1: Examples of parametric (left) and non-parametric (right) specs.
reinforcement learning (RL) to speed up RV. Valg addresses
the challenge of on-the-fly prediction of whether about-to-
be created monitors for parametric specs, or signaled events
for non-parametric specs will be redundant. So, Valg uses
feedback about redundancy of prior monitors and events
to guide future monitor creation and event signaling. That
feedback can be seen as probability p, based on prior traces,
that future events at location ℓ in monitored program P will
create redundant monitors (or be redundant). If p is below
a threshold, P signals the next event to RV and updates ℓ′s
probability. Otherwise, that next event is not signaled.

A key idea in Valg is our novel formulation of selective
monitor creation as a two-armed bandit RL problem. Valg’s
design is based on an insight from our analysis of data
from [36]: if a redundant monitor is created or a redundant
event is signaled for spec s at location ℓ, subsequent monitors
or events for s at ℓ are likely to also be redundant. Valg
assigns an RL agent to each ℓ. The RL reward function aims
to reduce redundant monitors and preserve unique traces. So,
each agent rewards necessary monitor-creation actions, and
penalizes redundant ones. To reduce redundant events for non-
parametric specs, Valg only signals an event at location ℓ if
the spec was not previously violated at ℓ.

We implement two variants of Valg for Java: (i) ValgJ, built
on JavaMOP [54], [73]—a state-of-the-art (SoTA) implicit-
trace RV tool that uses event-by-event monitoring algorithms
to avoid the time and space costs of storing traces; and
(ii) ValgT, built on TraceMOP [38]—a SoTA explicit-trace RV
tool that works like JavaMOP but also stores traces.

We evaluate Valg using 160 JDK API specs and default RL
hyperparameters on one revision each of 64 Java open-source
projects. ValgJ’s and ValgT’s end-to-end times are up to 20.2x
(geometric mean: 1.4x) and 551.5x (geometric mean: 1.8x)
faster than JavaMOP’s and TraceMOP’s, respectively, while
preserving 99.6% of spec violations. Excluding instrumenta-
tion time, ValgJ and ValgT are up to 625x and 909.1x faster
than JavaMOP and TraceMOP, respectively. For example, Valg
reduces 24.1, 24.1, and 24.3 hours that TraceMOP takes for
three projects to 4.2, 2.6, and 4.8 minutes, respectively. Valg
reduces redundant traces and events by 96.4% and 98.7%,
respectively. Valg also exceeds the relative speedups and the
number of detected violations of two baselines that randomly
sample events and traces by up to 20.1x and 7.0x, respectively.

Users who care only about violation preservation can use
Valg with default hyperparameters. But, with default hyperpa-

rameters, Valg checks only 76.7% of unique traces on aver-
age. Checked unique traces is a stronger criterion for Valg’s
bug-detection ability than violation preservation: checking all
unique traces guarantees finding all violations, but not vice
versa. So, as an optimization, we use Optuna [1] to tune
hyperparameters, resulting in Valg checking 97.1% of unique
traces with little loss in speed. Hyperparameter tuning is costly,
but it is an offline process whose results can be reused as
code evolves. After tuning, Valg preserves its high rate of
unique traces checked, violations preserved, and speedups
across many revisions of a subset of 46 evaluation projects.

This paper makes the following contributions:
⋆ Technique. Valg is the first on-the-fly selective monitor

creation and event signaling technique for RV of tests and
the first to use reinforcement learning to speed up RV.

⋆ Tools. We implement ValgJ and ValgT on top of SoTA Java
RV tools that already integrate with open-source projects.

⋆ Comparisons. We compare Valg in single- vs. multi-
revision settings, with and without hyperparameter tuning,
and with random sampling.

⋆ Results. Valg speeds up RV by up to 551.5x, finds 99.6% of
violations, checks 97.1% of unique traces, reduces redun-
dancy by up to 98.7%, and outperforms random sampling.

Our Valg implementation, evaluation scripts, and artifacts are
at https://github.com/SoftEngResearch/Valg.

II. MOTIVATING EXAMPLES AND BACKGROUND

First, §II-A and §II-B provide examples of the kinds of
specs that we use in this paper and the two kinds of redundant
monitoring that Valg aims to reduce. Then, §II-C provides a
brief background on reinforcement learning.

A. Specs

The left side of Figure 1 shows an example parametric spec,
Appendable ThreadSafe [3], which is parameterized over
Appendables (other than StringBuffer, lines 5 and 10); it
checks if calls to append are thread safe. A safe append

event (lines 3–7) is signaled before the first call to append

on Appendable a, at which time RV creates a monitor whose
owner field references the current thread. That event is also
signaled on subsequent calls to a.append() from owner. But,
before a.append() is called in threads other than owner, the
unsafe append event (lines 8–11) is signaled, violating the
extended regular expression (ERE) property on line 12 and
causing RV to print a violation message (line 13).

https://github.com/SoftEngResearch/Valg


1 private double eval(String f_x, double xi)
2 // exception and local variable declarations
3 for (int i = 0; i < f_x.length(); i++) {
4 char character = f_x.charAt(i);
5 if (character >= ’0’ && character <= ’9’) {
6 hasNumber = true;
7 number += character; // calls .append() twice
8 if (i == (f_x.length() - 1)) {
9 value = new Double(number).doubleValue();

10 ...}}...}
11 return value; }

1 public static String generateData(int byteSize) {
2 ...
3 StringBuilder b = new StringBuilder(byteSize * 2);
4 for (int i = 0; i < byteSize; i++) {
5 if (Math.random() * 100 > 98) {
6 // appends a terminating character to b
7 } else {
8 // appends a random character to b
9 }

10 }
11 return b.toString(); } // called by many threads

Fig. 2: Code generating redundant monitors for a parametric spec (left) and redundant events for a non-parametric spec (right).

We show Appendable ThreadSafe here for simplicity.
Most parametric specs in this paper are more complex, param-
eterized by multiple object types, and use other logics such as
Linear Temporal Logic (LTL) [85] and Finite State Machines
(FSM) [79]. Also, parametric specs often designate creation
event(s) that trigger monitor creation. If no creation event is
designated, the first spec-related event that is signaled acts as
the creation event.

The right side of Figure 1 shows a non-parametric spec,
Math ContendedRandom [75]; it checks if the static method
Math.random() is called from multiple threads, which in-
creases thread contention [82]. RV creates only one monitor
to check all occurrences of both Math ContendedRandom

events in a monitored program. The onethread use event
(lines 3–7) is signaled before the first Math.random()
call, stores the current thread object in the monitor’s th

field, and is signaled for all subsequent Math.random()
calls from th. The otherthread use event (lines 8–
11) is signaled before Math.random() calls from threads
other than th, and a violation message of the ERE on
line 12—Math.random() should be called within the same
thread—is printed on line 13. Appendable ThreadSafe and
Math ContendedRandom helped find confirmed bugs [66].

B. Valg reduces redundant monitoring

Figure 2 shows simplified code snippets where numerous
monitors (eval, left) and events (generateData, right) are
redundant. These snippets are from expression.parser [92]
and asterisk.java [6], respectively. To evaluate expression
f x w.r.t. variable xi, eval iterates over and appends each
character in f x to number (line 7). RV creates a new
Appendable ThreadSafe monitor on each call to eval

to check two safe append events on line 7 (the append
operator is internally translated into two append method
calls). Because eval is called often during testing, RV creates
68,000,157 monitors, all of which check the same unique
trace [safe append, safe append] of events from the same
location. Yet, all such monitors except the first are redundant
and cannot find any new violation. Worse, similar snippets in
the same class trigger the creation of 164,000,349 redundant
Appendable ThreadSafe monitors; they add to RV’s over-
head but not to its bug-finding ability. Valg speeds up RV by
reducing redundant monitor creation.

The generateData method on the right of Figure 2 cre-
ates character sequences, calling Math.random() per iteration
(line 5) to add terminating characters. But, generateData is

called from multiple threads, leading to 260,000,000 redundant
events that violate Math ContendedRandom at line 5. Valg
also speeds up RV by reducing such redundant violating non-
parametric events.

C. A brief background on reinforcement learning (RL)

An RL agent interacts with an environment to learn an
optimal policy (a mapping from environment states to actions)
for achieving its goal [28]. To do so, an agent takes actions
in its environment states. Then, the agent receives a reward,
a numeric value on how good its action selection was with
respect to its goal. Next, the agent updates its policy based on
the reward. This process is repeated per time step and the agent
balances exploration (trying new actions) and exploitation
(selecting the best known action) to maximize rewards.

K-armed bandit [102] is a simpler RL problem where
environments have no states. At each time step t, the agent
selects action At from k possible actions (or arms), each
of which has an unknown reward probability distribution.
The agent gets reward Rt based on At’s reward distribution
and aims to maximize its rewards. Action-value methods are
commonly used to solve k-armed bandit problems; they have
two phases. The first phase estimates value Qt(a)—expected
reward at t—of each action a, based on past rewards. The
sample-average action-value method’s estimate is the average
sum of past rewards, where:

Qt(a)
.
=


∑t−1

i=1 Ri · 1Ai=a∑t−1
i=1 1Ai=a

, if
∑t−1

i=1 1Ai=a > 0

0, otherwise
(1)

where 1Ai=a is 1 if Ai = a and 0 otherwise. Estimated values
can be obtained efficiently incrementally [28]: the n + 1th
expected value after taking an action n times, Qn+1, computed
from the nth expected value Qn and its observed reward Rn:

Qn+1
.
= Qn +

1

n
(Rn −Qn) (2)

Sample-average is simple, but it requires stationary environ-
ments where reward distributions do not change over time.
For non-stationary environments, the exponential recency-
weighted average (ERWA) is more effective [102]. ERWA pri-
oritizes recent rewards using a weighted sum of past rewards
that adapts better to non-stationary environment changes:

Qn+1
.
= Qn+α (Rn −Qn) , where α is a learning rate (3)

In the second phase, action-value methods choose an action
based on estimated rewards. In the simplest greedy action
selection strategy, an agent always selects the highest-valued



action. But, in non-stationary environments, strategies enabling
probabilistic exploration can be effective, e.g., epsilon-greedy
action selection strategy [102] chooses a random action a with
probability ϵ, or the action with the highest expected reward:

At ←

{
argmaxa Qt(a) with probability 1− ϵ

random action a with probability ϵ
(4)

III. TECHNIQUE

A. Selective Monitoring

Valg uses RL to selectively create parametric monitors, and
violation feedback to selectively signal non-parametric events.
Rationale for a k-armed bandit formulation. We formulate
selective monitor creation as a k-armed bandit problem for
two reasons: (i) Monitor creation is a stateless problem; each
decision is not affected by outcomes of previous decisions.
(ii) General RL algorithms can incur unacceptable overhead
during RV. For example, Q-Learning [51] or Monte Carlo
Policy Gradient [106] must update a tabular structure or
neural network per reward observation. Such updates could
incur overhead that is proportional to the number of states.
Moreover, defining states is not trivial in the RV context. A
naı̈ve approach would be to define states based on previous
traces, but the space of such states may be intractably large.
RL-guided selective parametric monitor creation. Valg’s
monitor-creation agents learn policies that minimize the num-
ber of redundant traces, maximize the number of unique ones,
and preserve unique violations. Each agent’s environment in
the monitored program is a monitor creation point ℓ, a unique
program location where monitors can be created. Time step tl

is when a monitor creation decision is made at ℓ. An RL agent
associated with each ℓ takes one of two actions (or arms) at
each tl, i.e., At ∈ {create, ncreate}, where create synthesizes
a monitor and ncreate does not. There are only two possible
actions, so selective monitor creation is a two-armed bandit
problem involving Valg and the monitored program.

The reward for an action is drawn from two time-dependent
reward distributions Rcreate(t

l) and Rncreate(t
l), where:

• Rcreate(t
l) is a Bernoulli distribution for create at l, with

success probability p ∈ {0, 1}; the reward is computed as:

Rcreate, tl
.
= 0 if (traceltl is redundant) else 1 (5)

• Rncreate(t
l) is a degenerate distribution [89] over [0,1] for

ncreate at ℓ; the reward is the ratio of duplicate traces over
total traces checked by all monitors created at ℓ prior to tl:

Rncreate, tl
.
=

∑tl−1
k=0 1(trace

l
k is redundant)∑tl−1

k=0 1(trace
l
k is observed)

(6)

If At is create, Valg assigns the agent a reward of 0 if the
monitored trace was previously checked, or 1 otherwise. These
reward values aim to preserve unique traces. If At is ncreate,
Valg cannot track the trace that would have been monitored.
So, Valg assigns a continuous-valued reward based on traces
checked by prior monitors created at ℓ. That reward is an
estimate of the likelihood that the trace that would have been
checked is redundant. The number of observed (redundant)

Algorithm 1 Valg’s monitor creation action selection

Inputs: l: monitor creation point in program P , tl: time step at l
Output: Atl : selected action at time step t l

Globals: α: learning rate, ϵ: exploration probability, δ: threshold
Qn: map of actions to values after n selections
At l−1: previous action selected at time step (t l − 1)
tracel: set of observed traces at monitor creation point l
nc, nn,Aconv: action counters and action of convergence

1: procedure decideAction(l, t l )
2: nc ← 0, nn ← 0, Aconv ← null
3: if t l = 0 then return argmaxA (Q0 (A)) ▷ initial values
4: if Aconv ̸= null then return Aconv ▷ convergence
5: if At l−1 is create then ▷ previous action: create
6: Rcreate,t l−1 ← isDuplicate(tracelt l−1) ? 0 : 1
7: Qnc+1(create)

← Qnc(create) + α(Rcreate,t l−1 − Qnc(create))
8: nc ← nc + 1
9: else if At l−1 is ncreate then ▷ previous action: ncreate

10: Rncreate,t l−1 ← duplicatesRatio(tracel{0..t l−1})
11: Qnn+1(ncreate)

← Qnn(ncreate) + α(Rncreate,t l−1 − Qnn(ncreate))
12: nn ← nn + 1
13: if |Qnc(create)−Qnn(ncreate)| < δ then
14: Aconv ← (Qnc(create) > Qnn(ncreate)) ? create : ncreate

15: if rand(0, 1) < ϵ then return choose([create, ncreate])
16: else return (Qnc(create) > Qnn(ncreate)) ? create : ncreate

traces increases with time, so the reward value is updated every
time a monitor is created.
Selective non-parametric event signaling. Valg uses location
and violation information to selectively signal non-parametric
events. Valg records the location ℓ of a non-parametric event
that violates an API. Then, that event is subsequently signaled
only if its past occurrences at ℓ were non-violating.

B. Action-value Method for Selective Monitor Creation

Value estimation and action selection. To estimate action
values, Valg uses ERWA [102], which weighs recent rewards
more than past rewards (Equation 3). The rationale is that se-
lective monitor creation is non-stationary: reward distributions
change with time—the probability to observe a unique trace
is 100% or 0% and continuously alternates over time steps
(§III-A). Also, Valg enables probabilistic exploration by adopt-
ing the epsilon-greedy action selection strategy (Equation 4).
Other strategies, e.g., epsilon-decaying greedy selection [74]
are less suitable for selective monitoring because unique traces
can be observed at any time regardless of history.
Initial value selection. Valg selects initial values of actions,
which control the agent’s exploration using a balanced strat-
egy: an initial optimistic value for create and a realistic value
for ncreate. A realistic initial value enables exploration only
based on the action-selection strategy (e.g., with probability ϵ
in epsilon-greedy action selection); it initially assigns zero to
the action and enables the agent to learn real values during
exploration. In contrast, an optimistic initial value encourages
active exploration; it assigns an initial optimistic value to the
action, and when an action value gets smaller than that of
another action, the agent switches its exploration. So, Valg’s



Algorithm 2 Selective parametric monitor creation

Inputs: l: monitor creation point in P , s: a parametric spec
e(θ): an event for s at l, binding parameter instances θ

Globals: notTracked: (s, l)→ untracked parameters for s at l
tl: current time step at l

1: procedure signalEvent(e(θ), s, l) ▷ called in P
2: if θ /∈ notTracked[(s, l)] then
3: status← check(e(θ), s, l, tl) ▷ call to Valg
4: if status is notTracked then
5: notTracked[(s, l)]← notTracked[(s, l)] ∪ {θ}
6: procedure check(e(θ), s, l) ▷ called in Valg
7: if e is a creation event then
8: action← decideAction(l , t l); tl ← tl + 1 ▷ run Algorithm 1
9: if action is create then

10: m← createMonitor(s); rv(m, e(θ)); return tracked
11: else if action is ncreate then return notTracked
12: else
13: m← findMonitor(s, θ); rv(m, e(θ)); return tracked

balanced strategy encourages the selection of create at earlier
time steps. This choice is grounded in our empirical analysis:
unique traces often occur more frequently at earlier time steps.
Convergence logic. To determine when an agent should stop
learning, Valg uses a heuristic convergence logic: it checks if
the absolute difference in action values is sufficiently close
to 1. Theoretically, convergence is infeasible in non-stationary
environments as it requires the learning rate to decrease over
time [104], but the rate is fixed in such environments. However,
at monitor creation points, action values often approach to
0 for one action and 1 for another. For example, if a loop
repetitively generates duplicate (unique) traces, create and
ncreate values will approach 0 (1) and 1 (0), respectively.
Action-selection procedure. Algorithm 1 shows how a Valg
agent for monitor creation point ℓ selects an action At l at time
step tl. For the first time step, the agent takes the action with a
higher initial value (line 3). If convergence has occurred, the
agent takes action Aconv (line 4). Otherwise, the agent uses
its last action At l−1 to update its value estimation. If that
action was create, Valg assigns a binary reward based on the
Bernoulli distribution and updates the creation action value
Qn(create) (lines 5–8). If the last action was ncreate, Valg
assigns a continuous reward based on the ratio of duplicate
traces seen so far at ℓ and updates the no-creation action
value Qn(ncreate) (lines 9–12). Lastly, the agent updates
its convergence status based on δ (lines 13–14) and either
explores a random action with the probability ϵ (line 15) or
takes an action based on the learned values (line 16).

C. Implementation

Selective parametric monitor creation. Algorithm 2 shows
how Valg selectively creates monitors. If an event’s parameter
instance θ—a partial function from parameter types to concrete
objects [19]—is excluded from the “not-being-tracked” set
(explained shortly), the instrumented program P signals that
event to Valg (lines 2–3). If the signaled event is a creation
event (§II), Valg invokes decideAction (Algorithm 1) on the
RL agent for that code location to select an action (lines 7–8).
If the selected action is create, Valg creates a new monitor

Algorithm 3 Selective non-parametric event signaling

Inputs: l: event location in program P
s: a non-parametric spec, e: an event for s at l

Globals: vLocs: s→ set of l where s has been violated
1: procedure signalEvent(e, l, s) ▷ called in P
2: if l /∈ vLocs[s] then status← check(e) ▷ call to Valg
3: if status is violated then vLocs[s]← vLocs[s] ∪ {l}
4: procedure check(e) ▷ called in Valg
5: r← runMonitor(e); return r ▷ r ∈ {violated, notViolated}

to check the event, and returns tracked to P , indicating that
θ is being tracked (lines 9–10). If the action is ncreate, Valg
does not create a monitor, and returns notTracked, so P adds
θ to the set not being tracked (lines 11, then 4–5). If the
signaled event is not a creation event, Valg uses that event’s
instance parameter to find existing monitors that should check
it, sends the event to those monitors, and returns tracked to
P (lines 12–13). Valg’s parameter-based monitor search uses
JavaMOP or TraceMOP’s parametric trace slicing algorithms
to handle parameter instances [18], [19].

In addition to Algorithm 2, we discuss how Valg addresses
two important problems in selective monitor creation.
1. Monitors for partially bound parameter sets. Events seen

so far may not have bound all parameters of the spec.
In such cases, parametric trace slicing requires the ability
to create monitors for future events with more completely
bound parameter sets by cloning prior monitors for partially
bounded parameter sets. For this reason, Valg does not
apply selective monitor creation to monitors for partially-
bound parameter sets.

2. Overheads. Selective monitor creation incurs two main
costs: (i) the parameter sets being checked on line 2 can
grow very large, causing frequent and costly resizing oper-
ations in Valg’s internal data structures; and (ii) checking
if the (often very long) monitored traces are duplicates per
create action is time consuming. Valg uses two approaches
to reduce these costs. First, an integer max window size,
w, can be used to track the most recent w object instances
per pair of spec and location. The intuition is that monitors
created long ago are unlikely to be updated. Second, Valg
performs efficient checking using integer encoding. To
uniquely identify an event, Valg computes a hash of the
joinpoint object, i.e., a unique object that distinguishes an
instrumented program location. Also, to encode the order
between events, Valg adds a number from a pseudo-random
sequence with the same seed for each event. Valg keeps a
set of the encoded integers for unique traces, so the trace
comparison becomes a simple integer set inclusion check.

Selective non-parametric event signaling. Algorithm 3
shows that instrumented program P selectively signals a non-
parametric event to Valg only after checking whether the
corresponding spec s was not previously violated at location ℓ
(line 2). If so, Valg signals that event to the singleton monitor
for that spec, which in turn informs P whether that event
violates the spec (line 5). If so, P adds ℓ to set of locations
where s was previously violated (line 3), and will not signal
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Fig. 3: Reduction ratio of end-to-end (E) and monitoring-only (M) times in different projects

future s events from ℓ.
We implement Algorithms 2 and 3 for Java by extending

two state-of-the-art RV tools, JavaMOP and TraceMOP, into
ValgJ and ValgT, respectively. These RV tools instrument the
program using AspectJ [56], and signal events to handler
methods. Valg modifies AspectJ code to selectively signal
events, and integrates RL agents into the handler methods. Our
tools easily integrate with Maven, a popular build system.

TABLE I: Summary statistics on projects in our evaluation:
no. of test methods (#tests), time in seconds w/o RV (time),
lines of code (LoC), statement coverage. % (covs), branch
coverage. % (covb), no. of commits (#SHAs), years since 1st
commit (age), and no. of stars (#★).

#tests time LoC covs covb #SHAs age #★

Mean 146 44.5 9,643 61.2 53.4 633 9.9 493
Med 41 8.8 3,565 66.6 52.9 142 10.1 57
Min 1 0.2 49 3.1 4.7 3 3.1 6
Max 1,456 1,565.5 92,687 95.4 92.2 17,223 22.0 9,893
Sum 9,546 2,889.8 626,802 n/a n/a 41,173 n/a 32,085

IV. EVALUATION

We organize our evaluation around four research questions:
RQ1. How does Valg compare with JavaMOP and TraceMOP,

in terms of overhead, violations, and unique traces?
RQ2. How does Valg compare with random sampling?
RQ3. What is the impact of hyperparameter tuning on Valg’s

efficiency and effectiveness?
RQ4. How effective and efficient is Valg as code evolves?
RQ1 evaluates whether Valg is faster than state-of-the-art RV
tools, and the extent to which it preserves their bug-detection
ability. RQ2 compares Valg with two random sampling-based
baselines, using the same metrics as in RQ1. RQ3 evaluates
Valg’s RL-based selective monitor creation under different
hyperparameter values. Lastly, RQ4 evaluates how well Valg
performs on evolving software.
Evaluation subjects. Table I shows summary characteristics
on the 64 open-source projects that we evaluate. They are all
of those for which a prior study [36] found that monitoring

costs (to signal events, create monitors, find monitors, process
events, etc.) dominate—i.e., are greater than 50% of—RV
overhead. We exclude the other 1,480 projects in that study, as
instrumentation costs (not monitoring) dominate RV overhead
in them. In TraceMOP experiments, we exclude 6 of these
64 projects where TraceMOP crashes or exceeds our three-
day timeout. We use 160 specs of correct JDK API usage
protocols that were formalized by Lee et al. [61], and used in
all recent work on RV during testing of open-source projects.
To simulate software evolution in RQ4, we collect up to 50
revisions per project that compile, where all tests pass with and
without JavaMOP, and where hyperparameter tuning (§IV-D)
finishes within our time and financial budgets. We find 1,472
revisions in 46 projects that meet these criteria.

Default hyperparameters. We set Valg’s hyperparameters to
commonly-used values in the literature [102]: α (learning rate)
as 0.9, ϵ (exploration probability) as 0.1, δ (threshold) as 1e-
5, and initial optimistic and realistic action values of 5 and 0,
respectively. Also, we empirically set the max window size w
to 32; this value achieved good violation preservation in our
early experiments.

Baselines. §I briefly described state-of-the-art tools JavaMOP
and TraceMOP. We use their implementations in the Trace-
MOP GitHub repository [103], which also includes modern-
ized code for JavaMOP and its RV-Monitor [73] backend. RQ2
and RQ3 compare Valg with several baselines: (i) RS10 and
RS50 randomly choose to create monitors with probability
10% and 50%, they are not feedback guided, and do not
use RL; (ii) Valgα and Valgϵ are configurations of Valg’s RL
component that use learning rate α of 0.5, and exploration
probability ϵ of 50%, respectively, and use default values of
other hyperparameters.

Experimental setup. For RQ1 and RQ2, we use machines
with Intel® Xeon® 72-core 2.2 GHz processors and 125GB
RAM (JavaMOP) or 2.6 GHz processors and 503GB RAM
(TraceMOP). For hyperparameter tuning in RQ3, we use a
cluster of 194 compute nodes. For RQ4, we use Google Cloud
Platform (GCP) VMs running Intel® Emerald Rapids® 2-core
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Fig. 4: Redundant parametric traces (left) and non-parametric events (right) checked by TraceMOP vs. ValgT and JavaMOP
vs. ValgJ, respectively. Y-axes are log scale (base 10). Y-axis in the left plot does not start from zero.

2.9 GHz processors and 640GB RAM. All experiments are run
in Docker containers with Ubuntu 20.04.6 LTS and Java 8. We
write scripts to automate hyperparameter tuning and evolution
experiments on GCP. For more accurate time measurement,
each project is run on a dedicated (virtual) machine.

A. RQ1: Comparing Valg with SoTA RV tools

1) Time Comparison: Figure 3 shows relative end-to-end
(darker bars) and monitoring-only (lighter bars) times for
ValgJ vs. JavaMOP (top) and ValgT vs. TraceMOP (bottom);
lower is better. The 100% lines mark JavaMOP or TraceMOP
time. Monitoring-only time is RV time minus instrumentation
time (which Valg does not reduce); it shows the degree to
which Valg reduces the monitoring portion of RV overhead.
ValgJ vs. JavaMOP. The top plot in Figure 3 shows that
ValgJ’s end-to-end time is faster than JavaMOP’s in 56 (of
64) projects by an average of 37.5% (max: 95.1%, or 20.2x).
In absolute terms, that average end-to-end time reduction is
20.2 minutes (max: 4.3 hours). Considering monitoring-only
times, ValgJ is faster than JavaMOP in 62 (of 64) projects
by an average of 57.5% (max: 99.8%, or 625x). In absolute
terms, that average monitoring-only time reduction is 22.7
minutes (max: 7.4 hours). Bars marked with “x” are projects
in the top-quartile by decreasing end-to-end time, where Valg
saves significant time. For example, ValgJ reduces end-to-
end time in project 56 from 4.9 hours to 34 minutes (tests
without RV for that project take 13.9 seconds). In 8 projects,
ValgJ takes longer than JavaMOP (above 100% line) because
the two overheads of Valg (§III-C) outweigh the savings
that it provides. But, ValgJ can achieve further speedup via
hyperparameter tuning (§V). Also, end-to-end RV time in these
8 projects is often less than a minute (median: 4.1 minutes).
ValgT vs. TraceMOP. The bottom plot in Figure 3 shows that
ValgT’s end-to-end time is faster than TraceMOP’s in 57 (of
58) projects by an average of 54.4% (max: 99.8%, or 551.5x).
In absolute terms, that average end-to-end time reduction is 1.6
hours (max: 24.3 hours). Considering monitoring-only times,
ValgT is faster than TraceMOP in all 58 projects by an average
of 69.8% (max: 99.9%, or 909.1x). In absolute terms, that
average monitoring-only time reduction is 24.6 minutes (max:
7.7 hours). So, TraceMOP benefits more from Valg’s time
savings than JavaMOP. Projects with higher end-to-end times
see more savings with ValgT. For example, TraceMOP’s end-

to-end time is 24.1, 24.1, and 24.3 hours for projects 61,
62, and 63, where ValgT reduces to only 4.2, 2.6, and 4.8
mins, respectively. Also, ValgT finishes for two projects where
TraceMOP runs out of memory, and ValgT is slower in one
project where TraceMOP has low end-to-end time.

2) Violation Comparison: ValgJ and ValgT efficiency gains
do not come at the expense of missing violations. ValgJ misses
only three or 0.4% of 785 violations across all projects. Those
missed violations are in a project with test non-determinism
where we could not evaluate ValgT. The violations are in the
else branch of an if statement whose then branch is more
frequently executed than the else branch (§V gives details).
ValgJ detects all violations in this project after we adjust the
learning rate (α) to a custom value or re-run multiple times.

3) Trace Comparison: Figure 4 compares numbers of re-
dundant parametric traces (left) and redundant violating non-
parametric events (right) that ValgT and ValgJ (dark-colored
bars) checks with those of TraceMOP and JavaMOP, respec-
tively (light-colored bars). There, the y-axes are in log (base
10) scale because projects often produce millions of traces and
events. The numbers above the bars show thousands of unique
parametric traces (left) checked by TraceMOP and number
of unique violating non-parametric events (right) checked by
JavaMOP. The plot on the right shows only projects with a
non-parametric spec violation.

Across all projects on the left, ValgT checks only 98,682,002
of all 2,720,614,555 redundant parametric traces that Trace-
MOP checks; a 96.4% reduction (avg: 93.5% per project).
As highlights, in projects 44 and 47, TraceMOP checks
328,001,801 and 63,329,660 redundant traces, but ValgT
checks only 160,498 and 20,055 redundant traces, respectively.
Similarly, ValgJ checks only 3,698,125 out of 292,600,394 re-
dundant violating non-parametric events that JavaMOP checks;
a 98.7% reduction (avg: 67.4% per project). These reductions
in redundant traces and violating events explain the speedups
that Valg provides over JavaMOP and TraceMOP.

In 10 of 58 projects, ValgT checks all unique traces that
TraceMOP finds. But, across all projects, TraceMOP checks
only 58.1% of unique traces (avg: 76.9% per project). Check-
ing fewer traces in ValgT compared with TraceMOP can be a
problem because ValgT could potentially miss future violations
in such projects. In RQ3, we turn to the question of how to
improve such low unique trace preservation ratios.



TABLE II: Valg vs. two random sampling approaches and a baseline that uses the sample-average method. Each cell: total
(relative change of total) / average (average of relative change per project). ▲ and ▼: baseline is better. ▲ or ▼: Valg is better.

E2E Timej (s) Redundant Events Uniq. Events E2E Timet (s) Redundant Traces Uniq. Traces

RS10 4,061 (▲56.3%) 5,704,369 (▲710.3%) 124 (▼39.8%) 5,368 (▼40.7%) 61,195,416 (▲144.3%) 86,258 (▼66.1%)
/ 169 (▲96.9%) / 228,175 (▲46436.9%) / 5.0 (▼30.5%) / 233 (▼5.0%) / 2,549,809 (▲507.8%) / 3,594 (▼36.3%)

RS50 4,153 (▲59.8%) 9,140,459 (▲1198.4%) 180 (▼12.6%) 12,359 (▲36.6%) 354,277,760 (▲1314.2%) 239,698 (▼5.7%)
/ 166 (▲123.7%) / 365,618 (▲46741.0%) / 7.2 (▼10.0%) / 494 (▲51.4%) / 14,171,110 (▲4637.5%) / 9,588 (▲27.8%)

Valg 2,599 / 104 703,992 / 28,160 206 / 8.2 9,050 / 362 25,051,852 / 1,002,074 254,197 / 10,168

B. RQ2: Comparing Valg with random sampling baselines

We compare Valg with RS10 and RS50, which randomly
create monitors with probability 10% and 50%, respectively.
We use 25 randomly selected projects with violations and
whose end-to-end time for TraceMOP is less than two hours.

As Table II shows, Valg outperforms these baselines: it
(i) is faster, (ii) checks fewer redundant traces and events,
and (iii) finds more violations. Notably, RS50 is up to 123.7%
slower, and checks 46,741% and 4,637.5% more redundant
events and traces than ValgJ and ValgT, respectively. These
percentages are computed as ((x− y)/y ∗ 100), where x and
y is the number of redundant traces checked by a baseline
and Valg, respectively. RS10 is slightly faster than ValgT, but
it checks 66.1% fewer unique traces and misses 39.8% of
violations. RS10 also misses 27.2% of violations that RS50

finds. But, RS50 checks 488.1 and 1,169.9 percentage points
(pp) more redundant events and traces, respectively, than RS10.
RS10 and RS50 have similar end-to-end times for JavaMOP
(56.3% vs 59.8% relative overheads). But, RS50 is 77.3 pp
slower than RS10 for TraceMOP.

C. RQ3: Investigating the impact of hyperparameters

We investigate whether hyperparameter tuning can help Valg
better preserve unique traces, while maintaining its efficiency.
Hyperparameter tuning is costly in general [24], and specifi-
cally in our RV setting. So, we first perform a small formative
study using 25 projects from RQ2. Specifically, we change
Valg’s most influential hyperparameters: learning rate α and
exploration probability ϵ. To avoid confounding effects, we
keep all other hyperparameters constant, and change only α
and ϵ to 0.5 one at a time. We call the resulting configurations
Valgα and Valgϵ, respectively. Valgα and Valgϵ find all 206
violations and check 8,677 and 31,595 more unique traces in
13 and 19 projects than before tuning.
Tuning setup. To better explore the space of hyperparameter
values, we use Optuna [1] to automate the hyperparameter
tuning process. Optuna allows one to define custom objective
functions, and it finds optimal hyperparameter values based
on repetitive trials. To design our experiments, we make two
initial attempts on six projects: (i) single-objective to maximize
the number of unique traces checked, and (ii) multi-objective
to maximize unique traces checked and minimize time. Single-
objective tuning checks more unique traces in five projects,
with at most 4% additional time overhead compared to multi-
objective tuning. So, we use single-objective in the rest of this
RQ3. Also, Optuna often finds more optimal hyperparameters

TABLE III: Unique trace preservation after tuning.

Uniq. Tracesd → Uniq. Traceso | Total Uniq. Traces

5,370 (14.1%) → 18,792 (49.5%) | 37,977 1,997 (40.1%) → 4,092 (82.3%) | 4,975
29,142 (5.4%) → 542,383 (100.0%) | 542,432 3,390 (69.8%) → 4,638 (95.5%) | 4,859
22,646 (47.3%) → 35,411 (74.0%) | 47,881 889 (75.2%) → 1,087 (92.0%) | 1,182
26,497 (25.3%) → 89,531 (85.5%) | 104,715 989 (57.2%) → 1,729 (100.0%) | 1,729
8,403 (72.9%) → 11,503 (99.8%) | 11,527 1,971 (69.2%) → 2,090 (73.4%) | 2,846
3,554 (28.6%) → 10,575 (85.2%) | 12,412 451 (48.8%) → 923 (99.8%) | 925
26,369 (58.9%) → 38,280 (85.5%) | 44,765 818 (38.8%) → 2,027 (96.2%) | 2,107
3,060 (12.4%) → 20,246 (82.0%) | 24,689 59 (75.6%) → 81 (103.8%) | 78
5,803 (76.5%) → 7,457 (98.3%) | 7,582 299 (19.6%) → 946 (62.2%) | 1,522
16,165 (46.5%) → 34,904 (100.4%) | 34,774 673 (61.4%) → 1,075 (98.1%) | 1,096

Σ Other 38 Projects: 1,055,879 (87.9%) → 1,203,751 (100.2%) | 1,201,306

Σ All Projects: 1,214,424 (58.1%) → 2,031,521 (97.1%) | 2,091,378

after 50 trials. So, we use 100 trials per iteration and three
iterations per project.

Tuning helps Valg check more unique traces. Table III
shows how many unique trace Valg checks before (Uniq.
Tracesd) and after (Unique. Traceso) tuning. Due to space
limits, here we only present 20 projects whose preserva-
tion ratio is lower than the average (76.7%). The other 38
projects preserved 87.9% of their unique traces in total.
Across all 58 projects, out of 2,091,378 unique traces, Valg
checks 1,214,424 (58.1%) before tuning. That rate improves to
2,031,521 (97.1%) after tuning. As a highlight, in one project
ValgT checks 29,142 (5.4%) unique traces before tuning, and
542,383 (100%) after tuning. Some projects improve to more
than 100.0% due to nondeterministic executions that cause
Valg to check different traces in different runs on the same
project revisions and tests. To partially mitigate the effect of
non-determinism, we run TraceMOP three times and take the
average unique-trace count as the baseline. When analyzed
per project, hyperparameter tuning improves Valg’s average
ratio of unique traces checked from 76.7% to 95.1%. RQ4
reports on the impact of tuned hyperparameter values on Valg’s
efficiency as software evolves.

D. RQ4: Investigating the impact of software evolution

We compare Valg with default hyperparameters vs. Valg
with tuned hyperparameters on 1,472 versions of 46 projects.
1. Valg’s speedups as software evolves. The left plot in Fig-
ure 5 shows time-saving ratios across all revisions per project
(lower is better). Each ratio is ((

∑n
i=1 xi)/(

∑n
i=1 yi)) ∗ 100,

where x is end-to-end time for ValgJ (ValgT), y is end-to-
end time for JavaMOP (TraceMOP), and n is the revision
count; lower is better. The dashed bars show Valg’s time
with default hyperparameters, and the solid bars above show
slowdowns after tuning. When Valg is faster with tuned
hyperparameters, no solid bars are shown. Overall, Valg with
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Fig. 6: Effect of hyperparameter tuning on ValgJ time (left), ValgT time (middle), and unique traces checked (right). The projects
are cassette-nibbler [52], ASM-NonClassloadingExtensions [34], and jpoker [22], from top to bottom.

tuned hyperparameters is still more efficient than JavaMOP
and TraceMOP (the 100% line).

The average per-project slowdowns among all 46 projects
amount to 0.7 (max: 59.5) minutes and 6.1 (201.7) minutes,
respectively. Using tuned hyperparameters is slower than using
default ones in 723 and 826 of 1,472 revisions across all
46 projects, with average per-revision slowdowns of 4.1%
(max: 34.0%) and 2.0% (max: 21.6%) for ValgT and ValgJ,
respectively. These per-sha slowdowns amount to an average
of 0.5 (max: 2.8) minutes and 1.4 (max: 7.6) minutes, respec-
tively. These averages are affected by projects and revisions
where using default hyperparameters is slower than using
tuned ones; there are 22 and 15 such projects for ValgJ and
ValgT, respectively. The existence of such projects shows that
tuned hyperparameters can preserve (or even provide more)
efficiency when using Valg.

2. Unique traces checked by Valg as software evolves. The
right plot in Figure 5 shows proportions of TraceMOP’s unique
traces that Valg checks across all revisions per project (higher
is better). Each ratio is computed using the same formula as for
time, but higher values are better here. The dashed bars show
Valg’s unique trace preservation with default hyperparameters,

and the solid bars above show how much the ratio is improved
after tuning. Overall, using tuned hyperparameters improves
the proportion of TraceMOP’s unique traces checked by ValgT
(the 100% line).

In 35 out of 46 projects, ValgT with tuned hyperparameters
checks more unique traces than ValgT with default ones. ValgT
after tuning checks an average of 11.6% (max: 87.2%) more
unique traces than before tuning per project. These translate to
an average of 531,547 (max: 22,699,326) more unique traces.
After tuning, ValgT checks more traces in 1,107 of 1,472
revisions, by an average of 12.6% (max: 94.7%) and 16,611
(max: 513,384) per revision. But, in 11 projects, Valg checks
6.8% (max: 24.1%) less unique traces on average after tuning.

3. More Valg trends as software evolves. Figure 6 shows
how hyperparameter tuning affects time and unique trace
preservation. For the lack of space, we present three projects
(122 revisions) as examples. The plots for other projects can
be found in our repository [97]. The dashed lines at 100%
represent JavaMOP and TraceMOP. Tuned hyperparameters
still bring much speedup; compared to default hyperparam-
eters, they have average slowdowns of 4.2% and 15.4% for
JavaMOP and TraceMOP, respectively. With such small loss



1 boolean reorderIncorrectShiftTransition(...) {
2 ...
3 if (lastBinary.side == Transition.Side.RIGHT) {
4 for (int i = 0; i<leftoverBinary.size(); ++i)
5 cursor.add(new Transition(..));
6 cursor.add(new Transition(..)); }
7 else {
8 cursor.add(new Transition(..)); // violation
9 for (int i = 0; i<leftoverBinary.size()-1; ++i)

10 cursor.add(new Transition(..)); // violation
11 cursor.add(new Transition(..)); } // violation
12 return true; }

Fig. 7: Unique violations missed by Valg.

in efficiency, ValgT preserves 52.2%, 61.8%, and 34.2% more
unique traces for these three projects. Also, the high ratios of
checked traces are preserved across many versions.

V. DISCUSSION

Comparison with evolution-aware RV. Our evolution-related
experiments may make the reader curious about how Valg
compares with eMOP [62]. Unlike Valg, which is evolution-
unaware, eMOP is an evolution-aware RV that aims to speed
up RV by taking code changes into account. In a new code
revision, eMOP re-monitors all tests against a subset of specs
related to code affected by changes. We integrate Valg with
two eMOP variants: (i) psc1 uses a more conservative change-
impact analysis (CIA), so it selects more specs as being related
to affected code, and is therefore slower; and (ii) pscl3 uses less
conservative CIA, selects fewer specs, and is therefore faster.
A safe evolution-aware RV technique is one that finds all new
violations after code changes [63]. psc1 is designed to be safe
(modulo static analysis limitations), while pscl3 is designed to
be fast at the expense of safety.

We use 63 projects with 2,157 revisions from our evalua-
tion subjects, and we only use ValgJ for these experiments,
since the eMOP tool [112] only works with JavaMOP. By
themselves, psc1 and pscl3 are 68.7% and 84.8% faster than
JavaMOP, respectively, across all these revisions. With Valg
integration, psc1 and pscl3 become even faster by 2.8% and
11.5%, respectively. Also, Valg preserves 10,534 and 9,152
among 10,597 and 9,162 new violations that psc1 and pscl3 find,
respectively. These results show that Valg is complementary
and orthogonal to evolution-aware RV with little loss (0.4%
on average) in violation preservation.
Ablation. To evaluate if selective monitor creation or event
signaling contributes more to Valg’s efficiency, we enable
only selective monitor creation in a variant called Valgsm.
On 63 projects in our evaluation, Valgsm speeds up JavaMOP
and TraceMOP by 8.9% and 84.4% on average, respectively,
compared to 26.9% and 89.2% for ValgJ. So, RL-guided
selective monitor creation contributes more, but selective non-
parametric event signaling provides additional speedup.
Speedup rates ̸= redundancy reduction rates. Valg’s
speedups (avg: 54.4%) are lower than its redundant trace and
event reduction rates (avg: 96.4%), due in part to (i) Valg’s
overheads (§III-C); (ii) instrumentation costs, which Valg does
not address; and (iii) unique traces being on average much
longer than redundant ones—monitoring fewer traces does not

always translate to proportionally less monitoring costs. As an
example of the latter, in one project, the average length of its
66,770,809 redundant traces is 718. But, the 134,561 unique
traces in this project have 15,601 events on average.
Missed violations. Probabilistic aspects of RL cause Valg
to miss the three violations in Figure 7, simplified from
CoreNLP [33]. RV reports these three violations because the
ListIterator Set spec [69], which checks that add should
not come before set, is violated. There, the program execution
mostly explores the if block, misguiding Valg to predict that
traces in this method are redundant and to not create monitors
that could check the related violating traces. But, there are
occasional executions of the else block, and Valg misses
those violations. Interestingly, our manual analysis confirms
that all three violations are false positives due to imprecision
in the spec. So, these misses have no impact on the RV’s bug
detection ability in this project. Also, custom hyperparameter
values or running Valg multiple times find these violations.
Memory overheads. To evaluate how much additional mem-
ory Valg uses compared to the baselines, we randomly selected
9 projects and profiled their memory usage. Valg used 16.6%
and 25.3% less memory for JavaMOP and TraceMOP, respec-
tively. Valg needs to store encoded trace information whereas
JavaMOP uses references to prior memory states, and also
uses complex data structures to track parameter instances and
violating locations. However, Valg uses an efficient encoding
mechanism for traces and significantly reduces monitor cre-
ation, which offset its overhead.
Limitations. (i) Theoretically, if events occur on objects that
are no longer within the max window size w, Valg could
wrongly report violations in suffixes of traces for such objects.
Our use of w = 32 works well for these projects, and we
observe no such wrongly-reported violations in multiple runs
of our experiments. Also, we do not set w for TraceMOP, so
that we can capture all unique traces. (ii) Some projects see
increased time with Valg due to Valg’s overheads. But, hyper-
parameter tuning is not limited to unique trace preservation.
One could also tune hyperparameters to minimize time. As a
proof-of-concept, we try a different value for α and ϵ each, on
25 projects. ValgJ and ValgT show additional time savings in
12 and 10 projects, respectively. (iii) Projects can have non-
deterministic test executions, so RV can check different unique
traces in different runs of the same code. This limitation has
also been observed in recent work [35], [38], and it affects
our comparisons based on unique-trace counts. So, we run
TraceMOP three times and take the union of its traces to
partially mitigate effects of non-deterministic executions.
Future work. Valg opens a new direction of learning-based
optimizations for RV and shows promising results. But, a lot of
future research is needed. We highlight four directions. First,
work is needed to speed up hyperparameter tuning, which
took 38.5 hours and $9.6 per project on average. Even though
tuning is an offline cost, many users are unlikely to be able
to afford it. Second, metrics and their automated measurement
are needed to detect when re-tuning is needed as code evolves.



Third, our tuning focuses on two parameters; future work can
investigate if tuning all four hyperparameters improves Valg’s
speedups and unique traces checked. Finally, we have only
explored few simple RL algorithms. Future work should in-
vestigate other algorithms to potentially adapt for RV. Beyond
these RL-related directions, future work can investigate the
combination and comparison of Valg and other orthogonal and
complementary techniques like regression test selection [25],
[26], [29]–[32], [40], [41], [58], [65], [67], [70], [71], [83],
[90], [91], [95], [109], [111], [113]–[115], iMOP [37], and
LazyMOP [35]. Also, future work can investigate whether
techniques for detecting and mitigating flaky tests [9], [39],
[59], [72], [84], [94], [96] could be adapted to help address
the problem of non-deterministic traces in RV. (All tests pass
in our experiments.)
Threats to validity. Our evaluation results may not generalize
beyond the projects we use. But, we show that Valg is effective
across 1,472 revisions. Also, other outcomes could result from
using different specs. But, the key idea in Valg is spec- and
test-agnostic, so we expect similar speedups. Many other RV
techniques [13], [14], [21], [53], [76], [88] and tools [4], [11],
[12], [55] exist. But, JavaMOP is a mature and widely-cited
tool in the RV community, on which TraceMOP is based.
We write scripts to automate experiments; they are subject
to errors but we are releasing them for external validation.

VI. RELATED WORK

Selective monitoring. QVM [4] and SMCO [49] are designed
for production settings; they adjust monitor creation and event
signaling rates over a long period to keep RV overhead under
a user-provided limit. Time-triggered RV [15], [16], [108] also
targets production settings, but for time-sensitive domains; it
only monitors at fixed time intervals to keep aggregated RV
overhead over a long period within a limit. Unlike these prior
works, Valg (i) is designed for testing, where one often does
not have a long time span over which to adjust monitoring
rates; (ii) does not require specifying a time budget; (iii) is
evaluated on evolving software; (iv) aims to reduce redundant
traces and events monitored; and (v) uses RL. We would
love to compare Valg with these techniques, but they have no
publicly available tools (e.g., QVM is proprietary). Purandare
et al. [87] proposed transformations to reduce redundant events
signaled in loops. But, their approach is limited: it cannot
reduce redundancies that are not related to loops, e.g., those
due to multiple tests calling a loop-free method many times.
Even within loops, their static analysis has limited support
for handling events in exception-handling code. Also, their
approach requires expensive (hours-long) static analysis per
program and spec pair, and was not evaluated during testing
of evolving software. Finally, they have no publicly available
tool. Valg does not have these limitations.
Other approaches for reducing RV overhead. Several tech-
niques [10], [12], [37], [81], [98]–[101] reduce instrumentation
costs, which can dominate RV overhead [36]. Valg reduces
monitoring costs, which dominate RV overhead in all projects
that we evaluate. But, Valg is complementary and could be

combined with these instrumentation-driven techniques in the
future. Evolution-aware RV [37], [62], [63], [112] does not
optimize RV directly; rather, it indirectly speeds up RV during
regression testing by re-monitoring only parts of code affected
by changes. Valg is complementary and orthogonal (§V), it
directly optimizes the RV, regardless of how it is applied.
Other techniques speed up RV via ahead-of-time static analy-
sis [7], [10], [13], [14], [23], specialized data structures [21],
[73], [88] or algorithms [18], [19], [45], [53], [76], [77], [93].
Many of these data structures and algorithms are implemented
in JavaMOP and TraceMOP, which Valg optimizes. Also, Valg
is orthogonal and complementary to the static-analysis based
approaches, none of which has a tool that we can evaluate or
was evaluated at scale during testing of evolving code. Future
work can revisit these static-analysis based techniques in CI.
Learning-based techniques and RV. RVPrio [78] used
classifiers to classify spec violations as true bugs or false
alarms. Some techniques used conformal prediction [68] and
BDD representation [80] to predict future events. Others used
Hidden Markov Models [8], [80], deep neural networks [17],
or Bayesian networks [50] to estimate the likelihood that a
monitor will end up in a violating state. In the other direction,
RV has been used for quality assurance of learning-based
autonomous systems [2], [86], [110] and deep neural net-
works [42], [46], [105], [107]. RTSA [60] monitors autopilots
and switches to the recovery controller in unsafe scenarios.
To balance between safety and efficiency, it uses RL to learn
an optimal switching policy. None of these works target the
reduction of redundant monitoring during testing, and Valg is
the first to use RL to speed up RV to the best of our knowledge.

VII. CONCLUSION

We introduced Valg, the first technique that speeds up
RV during testing by using on-the-fly feedback from prior
monitors and events to reduce the amount of redundant traces
and events that are checked subsequently. Valg is also the first
to use RL to speed up RV. Valg achieves speedups that are as
high as 20.2x and 551.5x, compared to two SoTA tools, while
finding 99.6% of violations that they find. Also, Valg reduces
redundant traces and events by up to 98.7%. We find that RL
hyperparameter tuning helps improve the number of unique
traces checked—a stronger measure of Valg’s effectiveness
than violations found—from 76.7% to 95.1% on average. Valg
opens up a new direction in using learning-based approaches to
speed up RV and we highlight some exciting future directions.
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parametric context-free patterns,” in ASE, 2008.

[78] B. Miranda, I. Lima, O. Legunsen, and M. d’Amorim, “Prioritizing
runtime verification violations,” in ICST, 2020.

[79] E. F. Moore, “Gedanken-experiments on sequential machines,” in
Automata Studies, 1956.

[80] O. Moran and D. Peled, “Runtime verification prediction for traces
with data,” in RV, 2023.

[81] S. Navabpour, C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister,
“Efficient techniques for near-optimal instrumentation in time-triggered
runtime verification,” in RV, 2011.

[82] Oracle, “Math.random() method,” 2006, https://docs.oracle.com/javase/
6/docs/api/java/lang/Math.html#random%28%29.

[83] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in FSE, 2004.

[84] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?” in ICSME, 2017.

[85] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977.
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